
Discontinuities

A real–valued function f of one real variable has discontinuity at x0 iff

• x0 is the cluster point of Df and x0 /∈ Df (we can try to calculate the limit of f at x0 but f is
not defined at x0)

or

• f is discontinuous at x0, i.e. x0 ∈ Df but the limit of f at x0 does not exist or is different than
f(x0).

Exercise 1. Discuss discontinuities of function f

a) f(x) =
sin(x− 2)

x2 − 3x+ 2

We have f(x) =
sin(x− 2)

(x− 2)(x− 1)
so Df = R \ {1, 2}. Function f is continuous on its domain1 (in

the top we have the composition of two continuous functions, in the bottom — polynomial).
Points 1 and 2 do not belong to domain but they are cluster points of domain so f has discontinuities

at 1 and at 2. In order to determine their types we have to calculate limits of f at these points.
We have

lim
x→2

f(x) = lim
x→2

sin(x− 2)

(x− 2)(x− 1)
= lim

x→2

sin(x− 2)

x− 2
· 1

x− 1
= 1 · 1 = 1

because if x→ 2 then x− 2→ 0 and x− 1→ 1. Hence f has removable discontinuity (I type) at 2.
For the limit at 1 we have to calculate one–sided limits because there is not an indeterminate form

(top tends to some number different than zero, bottom to zero). We obtain

lim
x→1+

f(x) = lim
x→1+

sin(x− 2)

(x− 2)(x− 1)
=

[
sin(−1)

−1 · 0+

]
= +∞

because sin(−1) = − sin 1 < 0 (look at the graph of sine function) and if x → 1+ (which means that
x is close to 1 and greater than 1) then x− 1 tends to 0 (but is positive).

Analogously (x→ 1+ means that x is close to 1 and less than 1)

lim
x→1−

f(x) = lim
x→1−

sin(x− 2)

(x− 2)(x− 1)
=

[
sin(−1)

−1 · 0−

]
= −∞.

Therefore f has infinite jump (the discontinuity of II type) at 1.

b) f(x) = arccot
x− 1

3− x

We see that Df = R \ {3}. Function f is continuous (as the composition of two continuous func-
tions: arccot and rational function). Hence f has the discontinuity at 3.

If x→ 3+ (x is close to 3 but greater than 3), then:

• x− 1→ 2

• 3− x→ 0−

• x−1
3−x → −∞ because we have [ 2

0− ]

• arccot x−1
3−x → π

so lim
x→3+

f(x) = lim
x→3+

arccot
x− 1

3− x
= π.

1We say that it is just continuous.
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If x→ 3− (x is close to 3 but less than 3), then:

• x− 1→ 2

• 3− x→ 0+

• x−1
3−x → +∞ because we have [ 2

0+
]

• arccot x−1
3−x → 0

so lim
x→3−

f(x) = lim
x→3−

arccot
x− 1

3− x
= 0.

Therefore f has I type discontinuity (finite jump) at 3.

c) f(x) =

 (1− x)x
2

if x < 0
arcsinx if x ∈ 〈0, 1〉
ln(x− 1) if x > 1

We see that Df = R. Function f is continuous on intervals: (−∞, 0), 〈0, 1〉, (1,+∞). It may be
discontinuous at 0 and 1, we have to check it.

Since
f(0) = (1− 0)0 = 10 = 1,

lim
x→0−

f(x) = lim
x→0−

(1− x)x
2

= 1,

lim
x→0+

f(x) = lim
x→0+

arcsinx = arcsin 0 = 0,

f is continuous at 0.

Since
f(1) = arcsin 1 =

π

2
,

lim
x→1−

f(x) = lim
x→1−

arcsinx =
π

2
,

lim
x→1+

f(x) = lim
x→1+

ln(x− 1) =

[
u = x− 1
x→ 1+ ⇒ u→ 0+

]
= lim

u→0+
ln(u) = −∞,

f has infinite jump at 1.

d) f(x) =


sinx
x if x ∈ 〈−1, 0)

2 if x = 0
−3 if x = 5

We see that Df = 〈−1, 0〉 ∪ {5}. Function f is continuous on interval 〈−1, 0) and it is continuous
at 5 (isolated point of Df ; remember that at isolated points of domain functions are always continuous
— it follows directly from the definition of continuity). Function f may be discontinuous at 0, we
have to check it.

We obtain
f(0) = 2,

lim
x→0

f(x) = lim
x→0−

f(x) = lim
x→0−

sinx

x
= 1,

so f has removable discontinuity at 0 (we can redefine the function by the change of its value at 0 to
obtain new function which is continuous at 0).
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Limits of functions of two variables

I Sometimes it is easy, you have to remember that if we calculate limit lim
(x,y)→(a,b)

f(x, y), then x

tends to a and b tends to y simultaneously. If you obtain an indeterminate form, then try to simplify
or rewrite the function in ‘better’ form and apply formulas for limits of functions of one variable, for
example:

1. lim
(x,y)→(2,4)

x+ y

x2 − y2
=

2 + 4

4− 16
=

1

2
;

2. lim
(x,y)→(2,−2)

x+ y

x2 − y2
[ 00 ]
= lim

(x,y)→(2,−2)

x+ y

(x− y)(x+ y)
= lim

(x,y)→(2,−2)

1

x− y
=

1

4
;

3. lim
(x,y)→(2,0)

(1 + 3xy)
x−1
y

[1∞]
= lim

(x,y)→(2,0)

[
(1 + 3xy)

1
3xy

]3x(x−1)
= e6;

4. lim
(x,y)→(2,1)

(1 + 3xy)
x−1
y = 71 = 7.

II If you suspect that the limit does not exists, apply the Heine definition:

lim
(x,y)→(a,b)

f(x, y) = L ⇐⇒

⇐⇒ ∀{(xn,yn)}

[
(xn, yn) ∈ Df , (xn, yn) 6= (a, b), lim

n→+∞
(xn, yn) = (a, b)⇒ lim

n→+∞
f(xn, yn) = L

]
.

• If we can find one sequence of arguments, convergent to (a, b), satisfying condition (xn, yn) 6= (a, b),
such that lim

n→+∞
f(xn, yn) does not exist, then lim

(x,y)→(a,b)
f(x, y) does not exist.

• If we can find two sequences of arguments {(x′n, y′n)} and {(x′′n, y′′n)}, both convergent to (a, b), sat-
isfying conditions (x′n, y

′
n) 6= (a, b) and (x′′n, y

′′
n) 6= (a, b), such that lim

n→+∞
f(x′n, y

′
n) 6= lim

n→+∞
f(x′′n, y

′′
n),

then lim
(x,y)→(a,b)

f(x, y) does not exist.

Example 5. Let us try to calculate lim
(x,y)→(0,0)

xy

x2 + y2
.

Let f(x, y) =
xy

x2 + y2
. Then Df = R2 \ {(0, 0)}.

Let the first sequence has general term (x′n, y
′
n) =

(
1
n ,

1
n

)
. Then

lim
n→+∞

f(x′n, y
′
n) = lim

n→+∞
f

(
1

n
,

1

n

)
= lim

n→+∞

1
n ·

1
n

1
n2 + 1

n2

= lim
n→+∞

1
n2

2
n2

= lim
n→+∞

1

2
=

1

2
.

Let the second sequence has general term (x′′n, y
′′
n) =

(
0, 1n

)
. Then

lim
n→+∞

f(x′′n, y
′′
n) = lim

n→+∞
f

(
0,

1

n

)
= lim

n→+∞

0 · 1n
0 + 1

n2

= lim
n→+∞

0
1
n2

= lim
n→+∞

0 = 0.

Obviously 1
2 6= 0 so lim

(x,y)→(0,0)

xy

x2 + y2
does not exist.

Example 6. Let us try to calculate lim
(x,y)→(0,0)

x2y

x4 + y2
.

Let f(x, y) =
x2y

x4 + y2
. Then Df = R2 \ {(0, 0)}.
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First, we consider infinitely many sequences with general term (x′n, y
′
n) =

(
1
n ,

k
n

)
, where k is any

real number. Then

lim
n→+∞

f(x′n, y
′
n) = lim

n→+∞
f

(
1

n
,
k

n

)
= lim

n→+∞

1
n2 · kn
1
n4 + k

n2

= lim
n→+∞

k
n

1
n2 + k

= 0.

It means that if this limit exists, then it is equal to 0. But the word ‘if’ is important. Let
(x′′n, y

′′
n) =

(
1
n ,

1
n2

)
. Then

lim
n→+∞

f(x′′n, y
′′
n) = lim

n→+∞
f

(
1

n
,

1

n2

)
= lim

n→+∞

1
n2 · 1

n2

1
n4 + 1

n4

= lim
n→+∞

1
n4

2
n4

= lim
n→+∞

1

2
=

1

2
.

Now we are sure that lim
(x,y)→(0,0)

x2y

x4 + y2
does not exist.

III Sometimes the Squeeze Theorem may be useful.

Example 7. Calculate lim
(x,y)→(0,0)

x2y2

x2 + y2
.

For any (x, y) 6= (0, 0) we have

0 ≤ x2y2

x2 + y2
≤ x2y2

x2
= y2.

Since lim
(x,y)→(0,0)

0 = lim
(x,y)→(0,0)

y2 = 0, we obtain lim
(x,y)→(0,0)

x2y2

x2 + y2
= 0.

Remarks:

• the sequence {(a+ 1
n , b+ k

n)} tends to (a, b);

• if you obtain the same limit of f(a + 1
n , b + k

n) for any k, try other sequences, for example

{(a+ 1
n2 , b+ k

n)} or {(a+ 1
n , b+ k

n2 )};

• if you suspect that lim(x,y)→(a,b) f(x, y) = L, you may try to show that lim(x,y)→(a,b) |f(x, y)−L| =
0 using the Squeeze Theorem;

• for limits at (0, 0) the polar coordinates x = r cos t, y = r sin t may be better (you know them
from algebra).
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