PART 1 INTRODUCTION

Sets of numbers

$\mathbb{N} = \{1, 2, 3, \cdots\}$	set of natural numbers
$\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \cdots\}$	set of integer numbers
$\mathbb{Q} = \left\{ \frac{a}{b} \colon a \in \mathbb{Z} \land b \in \mathbb{N} \right\}$	set of rational numbers
$\mathbb{R} = \mathbb{Q} \cup I\mathbb{Q}$	set of real numbers
$\mathbb{C} = \{a + bi: a, b \in \mathbb{R}, i^2 = -1\}$	set of complex numbers

The real line (or axis) – a line with indicated direction, origin 0 and unit 1.

Any real number has its own, one and only one, position on the real line, and vice versa: any point on the real line corresponds to exactly one real number. Intervals – subsets of \mathbb{R} of the form:

$$\{x \in \mathbb{R}: a < x < b\} = (a, b) \{x \in \mathbb{R}: a \le x \le b\} = \langle a, b \rangle \{x \in \mathbb{R}: a \le x < b\} = \langle a, b \rangle \{x \in \mathbb{R}: a < x \le b\} = (a, b)$$

$$\{x \in \mathbb{R}: x > a\} = (a, +\infty)$$
$$\{x \in \mathbb{R}: x \ge a\} = \langle a, +\infty \rangle$$
$$\{x \in \mathbb{R}: x < b\} = (-\infty, b)$$
$$\{x \in \mathbb{R}: x \le b\} = (-\infty, b)$$

Note:

$$\mathbb{R} = (-\infty, +\infty), \qquad (4,0) = \emptyset, \qquad \langle 3,3 \rangle = \{3\}$$

Df. 1. We say that set $S \subset \mathbb{R}$ is bounded above iff $\exists_{M \in \mathbb{R}} \forall_{x \in S} x \leq M$.

Number *M* is called the upper bound of *S*.

Df. 2. We say that set $S \subset \mathbb{R}$ is bounded below iff $\exists_{M \in \mathbb{R}} \forall_{x \in S} x \ge M$.

Number *M* is called the lower bound of *S*.

Df. 3. Set S is bounded iff it is bounded above and below.

Example:
$$S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} = \left\{ 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \cdots \right\}$$

Set *S* is bounded above (by 1, 20, $\sqrt{5}$, etc.). Set *S* is bounded below (by -2, 0, -15, etc.). Hence S is bounded.

Note that 1 is the least upper bound (i.e. supremum of *S*) and 0 is the greatest lower bound (i.e. infimum of *S*). We write:

$$\inf S = 0$$
, $\sup S = 1$.

Note that LUB and GUB are not necessarily members of S.

Example:
$$S = \{x \in \mathbb{N}: x^2 < 5\}$$
inf $S = ?$ sup $S = ?$ **Example:** $S = \{x \in \mathbb{Q}: x^2 < 5\}$ inf $S = ?$ sup $S = ?$

Completness Axiom:

Any nonempty bounded above subset of \mathbb{R} has the supremum.

It follows from CA that any bounded below nonempty subset of \mathbb{R} has the infimum. Therefore CA is an expression of the fact that there are no gaps or holes on the real line.

Cartesian product

Df. 4. The Cartesian product of sets A and B is the set of all ordered pairs such that the first element of the pair belongs to A and the second one belongs to B, i.e.:

 $A \times B = \{(a, b): a \in A \land b \in B\}.$

Example: if $A = \{0,1,2\}$ and $B = \{x, y\}$, then:

 $A \times B = \{(0, x), (0, y), (1, x), (1, y), (2, x), (2, y)\}$ $B \times A = \{(x, 0), (x, 1), (x, 2), (y, 0), (y, 1), (y, 2)\}$ $B \times B = \{(x, x), (x, y), (y, x), (y, y)\}$

In general, the Cartesian product is not commutative.

 $A \times A = A^2$ $A \times \emptyset = \emptyset$ $\emptyset \times A = \emptyset$

Analogously,

 $A \times B \times C = \{(a, b, c): a \in A \land b \in B \land c \in C\}.$ $A \times A \times A = A^3$ and so on.

Example: give the geometrical interpretation of

- a) $(1,2) \times \langle -1,-1 \rangle$ f) \mathbb{R}^2
- b) $(1,2) \times \{-1,1\}$ g) \mathbb{R}^3
- c) $\mathbb{N} \times \langle 0, 1 \rangle$ h) $\mathbb{R}^2 \times \{0\}$
- d) $\{2\} \times \mathbb{R}$ i) $\{0\} \times \mathbb{R}^2$
- e) $\mathbb{N} \times \mathbb{R}$

About theorems

Usually theorems have the form 'if p, then q'

 $p \Rightarrow q$

The converse of above theorem, i.e. 'if q, then p' may be a false statement.

Example:

 $x > 0 \Rightarrow x^2 > 0$ TRUE $x^2 > 0 \Rightarrow x > 0$ FALSE

p is a **sufficient** condition for *q*

q is a **necessary** condition for p

If both sentences $p \Rightarrow q$ and $q \Rightarrow p$ are true, then we can write

$$p \Leftrightarrow q$$

(p if and only if q).

Therefore p is necessary and sufficient for q, and vice versa.

Absolute value

Df. 5. The absolute value (modulus) of real number *x* is defined as follows

$$|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0. \end{cases}$$

Note that the modulus of *x* is the distance from *x* to 0.

Example:

Example:

 $|6-2|=4 \qquad |-3-2|=5$ $|4-12|=8 \qquad |-3-5|=8$ $|6-(-1)|=7 \qquad |-4-(-3)|=1$ $|1-(-5)|=6 \qquad |-4-(-7)|=3$

|a-b| = distance from a to b