PART 1INTRODUCTION

Sets of numbers

The real line (or axis) – a line with indicated direction, origin 0 and unit 1.

Any real number has its own, one and only one, position on the real line, and vice versa: any point on the real linecorresponds to exactly one real number.

Intervals – subsets of ^ℝ of the form:

$$
\{x \in \mathbb{R}: a < x < b\} = (a, b) \\
\{x \in \mathbb{R}: a \le x \le b\} = \langle a, b \rangle \\
\{x \in \mathbb{R}: a \le x < b\} = \langle a, b \rangle \\
\{x \in \mathbb{R}: a < x \le b\} = (a, b)\n\}
$$

$$
\{x \in \mathbb{R}: x > a\} = (a, +\infty)
$$

$$
\{x \in \mathbb{R}: x \ge a\} = \langle a, +\infty \rangle
$$

$$
\{x \in \mathbb{R}: x < b\} = (-\infty, b)
$$

$$
\{x \in \mathbb{R}: x \le b\} = (-\infty, b)
$$

Note:

 $\mathbb{R} = (-\infty, +\infty),$ (4,0) = Ø, (3,3) = {3}

Df. 1. We say that set $S \subset \mathbb{R}$ is bounded above iff $\exists_{M\in\mathbb{R}}\forall_{x\in S} x \leq M.$

Number M is called the upper bound of S .

Df. 2. We say that set $S \subset \mathbb{R}$ is bounded below iff $\exists_{M\in\mathbb{R}}\forall_{x\in S} x \geq M.$

Number M is called the lower bound of S .

Df. 3. Set S is bounded iff it is bounded above and below.

Example:
$$
S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} = \left\{ 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots \right\}
$$

Set S is bounded above (by 1, 20, $\sqrt{5}$, etc.). Set S is bounded below (by -2 , 0, -15 , etc.).

Hence S is bounded.

Note that 1 is the least upper bound (i.e. supremum of (S)) and 0 is the greatest lower bound (i.e. infimum of $\langle S \rangle$. We write:

$$
\inf S = 0, \qquad \sup S = 1. \qquad \qquad \bullet
$$

Note that LUB and GUB are not necessarily members of *S.*

Example:
$$
S = \{x \in \mathbb{N} : x^2 < 5\}
$$

\ninf $S = ?$

\nExample: $S = \{x \in \mathbb{Q} : x^2 < 5\}$

\ninf $S = ?$

\nsup $S = ?$

\nlim $S = ?$

Completness Axiom:

Any nonempty bounded above subset of ℝ has the supremum.

It follows from CA that any bounded below nonempty subset of ^ℝhas the infimum. Therefore CA is an expression of the fact that *there are no gaps or holes on the real line.*

Cartesian product

Df. 4. The Cartesian product of sets A and B is the set of all ordered pairs such that the first element of the pair belongs to A and the second one belongs to $B,$ i.e.:

 $A \times B = \{(a, b): a \in A \land b \in B\}.$

Example: if $A = \{0, 1, 2\}$ and $B = \{x, y\}$, then:

 $A \times B = \{(0, x), (0, y), (1, x), (1, y), (2, x), (2, y)\}$ $B \times A = \{(x, 0), (x, 1), (x, 2), (y, 0), (y, 1), (y, 2)\}$ $B \times B = \{ (x, x), (x, y), (y, x), (y, y) \}$ \bullet

In general, the Cartesian product is not commutative.

 $A \times A = A^2$ $A \times \emptyset = \emptyset$ $\emptyset \times A = \emptyset$

Analogously,

 $A \times B \times C = \{(a, b, c): a \in A \land b \in B \land c \in C\}.$ $A \times A \times A = A^3$ and so on.

Example: ^give the geometrical interpretation of

- a) $(1,2) \times (-1, -1)$ f) \mathbb{R}^2
- b) $(1,2) \times \{-1,1\}$ g) \mathbb{R}^3
- c) $\mathbb{N} \times \langle 0,1 \rangle$ h) $\mathbb{R}^2 \times \{0\}$
- d) ${2} \times \mathbb{R}$ i) ${0} \times \mathbb{R}^2$
- e) $N \times \mathbb{R}$

About theorems

Usually theorems have the form 'if *p*, then *q*'

p⇒*q*

The converse of above theorem, i.e. 'if q, then p' may be ^a false statement.

Example:

 $0 \Rightarrow x > 0$ 0022 $> 0 \Rightarrow x >$ $\,>$ ⇒ $\,>$ $x > 0 \Rightarrow x$ *x* $x^->0$ TRUE FALSE

p is a **sufficient** condition for *^q*

q is a **necessary** condition for *^p*

If both sentences $p \Rightarrow q$ and $q \Rightarrow p$ are true, then we can write

$$
p \Leftrightarrow q
$$

(*p* if and only if *q*).

Therefore *p* is necessary and sufficient for *q*, and vice versa.

Absolute value

Df. 5. The absolute value(modulus) of real number *x* is defined as follows

$$
|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}
$$

Note that the modulus of *x* is the distance from *x* to 0.

Example:

Example:

 6 $-2 \geq 4$ 6 $6 - (-1) \mid = 7$ $|4 - 12| = 8$ [−]4 $-4 - (-3) \mid = 1$ $|-3-2|=5$ $|1-(-5)|=6$ $|-4-(-7)|=3$ $|-3-5|=8$

 $|a - b|$ = distance from *a* to *b*