
PART 2

FUNCTIONS



Basic definitions
Df. 1. A function f from a setX to a setY is a rule (or method)
of assigning one and only one element inY to each element inX.
We write

The element that function f assigns to the element x is denoted �(�). 
Then:
x – input/independent value/argument
� = �(�) – output/dependent variable/value of f at x.

Note: f – function, f (x) – value of function (not the same!)

X – domain (set of all inputs)

Y – codomain

R – range (set of all outputs)

It is possible that � ≠ 	.

�: 	
 → �
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Df. 2. If a function �: 	
 → � takes on each value in setY
(i.e.	� = 	), then f is calledsurjective(or a surjection, or onto
function).

not surjective
surjective
not surjective
surjective

∀�∈�∃�∈�		� = �(�)

Examples:

�:ℝ → ℝ, � = sin �
�: ℝ → −1,1 , 	� = sin �
�: 0, � → −1,1 , � = sin �
�: 0, � → (0, 1�		� = sin �
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Df. 3. If a function �: 	
 → � sends distinct elements of
	to
distinct elements of�, then� is calledinjective(or aninjection,
or one-to-onefunction).

or, equivalently,

∀ ,!∈�		 " ≠ # ⟹ � " ≠ �(#)

∀ ,!∈�		 � " = � # ⟹ " = # .

Example:

� � = 2&� − 2�, � ∈ ℝ
� " = � #
2& − 2 	=	2&! − 2!' · 2 )!

2! − 2* )!	=	2 − 2 )*!

2! − 2 − 2* )!+2 )*! = 0

2! − 2 + 2 )! 2! − 2 =0

2! − 2 1 + 2 )! = 0
2! − 2 = 0
2! = 2 

" = #

� is injective
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Df. 4. If a function � is both injective and surjective, then�	 is
calledbijective(or bijection, or one-to-one ontofunction).

Df. 5. If �: 	
 → � is bijective, then theinverse function�&, is
defined as

�&,: � → 
,			�&, � = � ⟺ � � = �,

where � ∈ 
, � ∈ �.

Example:

�: � = 1 − � − 2, � ≥ 2

� − 2 = 1 − �
� − 2 = 1 − � *

� = 2 + 1 − � *

�&,: 	� = �* − 2� + 3, � ≤ 1

�&,: � = �* − 2� + 3, � ≤ 1
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Corollaries (for real-valued functions of one real variable):

• If a point ", # 	belongs to the graph of function�, then
point #, " belongs to the graph of function�&,.

• Graphs of two mutually inverse functions are symmetric
with respect to line� = � (the bisector of the first
quadrant).
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Df. 6. If �: 	
 → � and 1: � → 2, then thecompositionof
1 and� is the functionℎ: 	
 → 2 such that ℎ � = 1(� � )
for eachx from X.

We writeℎ = 1 ∘ � (�– inner function,1 – outer function).

Example:

� " = "* + 1, 1 # = sin #

1 ∘ � � = 1 �(�) = 1 �* + 1 = sin �* + 1

� ∘ 1 � = � 1(�) = � sin � = sin*� + 1

Here  1 ∘ � ≠ � ∘ 1.

Example:

ℎ � = 2� + 1

inner function� � = 2� + 1,

outer function1 � = � .
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Real-valued functions of one real variable 

We consider functions of the type

Df. 7. Function � is called periodiciff

[ ].)()(0 xfTxfDTxDxT =+∧∈+∀∃ ∈≠

NumberT is then called aperiodof 	�. The least positive
period of f is called theprimitive period.

Give examples of two different periodic
functions which do not have primitive periods.

�: 5 → ℝ, 5 ⊂ ℝ.
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Df. 8. A function� is increasingon a set7 ⊂ 5 iff

∀�8,�9∈:	 �, < �* ⇒ � �, < � �* .

Df. 9. A function� is decreasingon a set7 ⊂ 5 iff

∀�8,�9∈:	 �, < �* ⇒ � �, > � �* .

Df. 10. A function� is nonincreasingon a set7 ⊂ 5 iff

∀�8,�9∈:	 �, < �* ⇒ � �, ≥ � �* .

Df. 11. A function� is nondecreasingon a set7 ⊂ 5 iff

∀�8,�9∈:	 �, < �* ⇒ � �, ≤ � �* .
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Examples:

1) Function� =
,

�
is decreasing on(−∞, 0) and on 0,+∞ .

But it is not decreasing on its domain! We say that it is
piecewise decreasing.

2) Similarly, function  � =
,

�9
is piecewise monotonic.

3) Function� � = �? − 2�* + 3 is increasing on 1,+∞ . 
Indeed, if 1 < �, < �*, then

� �, − � �* = �,
? − 2�,

* + 3 − �*
? + 2�*

* − 3 =

= �,
? − �*

? − 2 �,
* − �*

* =

= �,
* − �*

* �,
* + �*

* − 2 �,
* − �*

* =

= �,
* − �*

* �,
* + �*

* − 2 < 0

so� �, < � �* .
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Df. 12. Function �	 is called eveniff

[ ].)()( xfxfDxDx =−∧∈−∀ ∈

Its graph is symmetric with respect to y-axis.
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Df. 13. Function � is called oddiff

[ ].)()( xfxfDxDx −=−∧∈−∀ ∈

Its graph is symmetric with respect to the origin.
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Df. 14. A function is bounded above(below) iff its range 
is bounded above (below).

If a function is bounded above and below then it is called 
bounded.
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Elementary functions
Df. 15. The following four functions, defined onℝ, are called
basic elementary functions:
• unit function@ � = 1,
• identity functionid � = �,
• exponential functionexp � = E� ,

• sine functionsin � = sin �.

Df. 16. The following functions are called elementary functions:
• each basic elementary function;
• constant multiple of elementary function;
• sum, difference, product, quotient of two elementary functions;
• the composition of two elementary functions;
• the inverse function to an elementary function;
• an elementary function with restricted domain
(of course if listed operations are feasible). 
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Examples of elementary functions

Power function
� = �F, G ∈ ℕ, G	 − odd
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Examples of elementary functions

Power function
� = �F, G ∈ ℕ, G	 − even
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Polynomial

Examples of elementary functions
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Quadratic function
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Power function

� =
1

�F
, G ∈ ℕ, G	 − odd

Examples of elementary functions
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Examples of elementary functions

Power function

� =
1

�F
, G ∈ ℕ, G	 − even
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Examples of elementary functions

Power function
� = �K , G ∈ ℕ, G	 − even
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Examples of elementary functions

Power function
� = �K , G ∈ ℕ, G	 − odd
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Exponential and logarithmic functions

Examples of elementary functions
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Hyperbolic functions
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Hyperbolic functions
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Hyperbolic functions
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Hyperbolic functions
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Examples of elementary functions
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Some properties of hyperbolic functions
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Trigonometric functions

Examples of elementary functions
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Trigonometric functions

Examples of elementary functions
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Trigonometric functions

Examples of elementary functions
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Trigonometric functions

Examples of elementary functions
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Some properties of trigonometric functions

sin*� + cos*� = 1

tan � cot � = 1

sin 2� = 2 sin � cos �

cos 2� = cos*� − sin*� =

			= 1 − 2sin*� = 2cos*� − 1

sin � + � = sin � cos � + cos � sin �

cos � + � = cos � cos � − sin � sin �		

sin � + sin � = 2 sin
� + �

2
cos

� − �

2

sin � − sin � = 2 cos
� + �

2
sin

� − �

2

cos � + cos � = 2 cos
� + �

2
cos

� − �

2

cos � − cos � = −2 sin
� + �

2
sin

� − �

2

sin � − � = sin �	

sin � + � = −sin �	

cos � − � = −cos �	

cos � + � = −cos �		

tan � − � = − tan �	

sin
�

2
+ � = cos �

cos
�

2
+ � = −sin �

tan
�

2
+ � = −cot �

cos
3�

2
+ � = sin �

sin
3�

2
− � = −cos �
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Inverse trigonometric functions

Examples of elementary functions

� = arcsin � ⟺ � = sin � ,		

� ∈ −1,1 , � ∈ −
�

2
,
�
2
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Inverse trigonometric functions

Examples of elementary functions

� = arccos � ⟺ � = cos � ,		

� ∈ −1,1 , � ∈ 0, �
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Inverse trigonometric functions

Examples of elementary functions

� = arctan � ⟺ � = tan� , � ∈ ℝ, � ∈ −
�

2
,
�
2
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Inverse trigonometric functions

Examples of elementary functions

� = arccot � ⟺ � = cot � , � ∈ ℝ, � ∈ 0, �
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Example: calculate the exact value of cos(arccot(−2)).

� = cos(arccot(−2))

arccot −2 = ", " ∈ P
*
, �

= cos " =

cot " = −2			

	
cos "
sin "

= −2	

	cos " = −2 sin "	
	

−
2

5
cos*" = 4sin*"			
cos*" = 4 − 4cos*"		

cos*" =
4
5
	

cos " = ±
2

5
Example. Show that:

1) arcsin � + arccos � = P
*

for � ∈ −1,1 ;

2) arctan � + arccot � = P
*

for � ∈ ℝ; 

3) sin(arcsin �)	 = � for � ∈ −1,1 ;

4) arcsin(sin �) =?
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Elementary functions of several variables

Let us consider a real-valued function ofn real variables, where n
is fixed, natural and greater than 1.

The following functions (the projection onto the ith coordinate) are 
basic elementary functions:

�: 5 → ℝ,5 ⊂ ℝF		

	� = �(�,, �*, ⋯ , �F)

�V	 �,, �*, ⋯ , �F = �V , W = 1,2,⋯ , G.

Elementary functions of several variables are functions obtained
from projections and their compositions with elementary functions
of one variable by operations listed in Df. 16.
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Example:

The function X �, � = 3�* + ln(� − �) is elementary because

constant 
multiple

product of two el. f-ns
composition of square 
root with el. f-ndifference of two 

el. f-ns

sum of two el. f-ns
composition of ln with el. f-n

X �, � = 3(�,(�, �))
*+ ln(�,(�, �) − �*(�, �))
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