PART 2FUNCTIONS

Basic definitions

Df. 1. A function f from a set X to a set Y is a rule (or method) of assigning one and only one element in*Y* to each element in *X*.We write $f: X \rightarrow Y$

The element that function *f* assigns to the element *x* is denoted $f(x)$. Then:

x – input/independent value/argument

 $y = f(x)$ – output/dependent variable/value of f at x .

Note: f – function, $f(x)$ – value of function (not the same!)

^X– domain (set of all inputs)

Y – codomain

It is possible that $Y \neq R$.

R – range (set of all outputs)

Df. 2. If a function $f: X \to Y$ takes on each value in set *Y* (i.e. $Y = R$), then f is called surjective (or a surjection, or onto function).

$$
\forall_{y \in Y} \exists_{x \in X} \ y = f(x)
$$

Examples:

$$
f: \mathbb{R} \to \mathbb{R}, \qquad y = \sin x
$$

$$
f: \mathbb{R} \to \langle -1, 1 \rangle, \qquad y = \sin x
$$

$$
f: (0, \pi) \to \langle -1, 1 \rangle, \qquad y = \sin x
$$

$$
f: (0, \pi) \to (0, 1) \quad y = \sin x
$$

not surjectivesurjective not surjectivesurjective

O

Df. 3. If a function $f: X \to Y$ sends distinct elements of X to distinct elements of X to distinct elements of Y, then f is called injective (or an injection, or one-to-one function).

$$
\forall_{a,b\in X} \ [a \neq b \Longrightarrow f(a) \neq f(b)]
$$

or, equivalently,

$$
\forall_{a,b\in X}\ [f(a)=f(b)\Longrightarrow a=b].
$$

Example:

$$
f(x) = 2^{-x} - 2^{x}, x \in \mathbb{R}
$$

\n
$$
f(a) = f(b)
$$

\n
$$
2^{-a} - 2^{a} = 2^{-b} - 2^{b} \cdot 2^{a+b}
$$

\n
$$
2^{b} - 2^{2a+b} = 2^{a} - 2^{a+2b}
$$

\n
$$
2^{b} - 2^{a} - 2^{2a+b} + 2^{a+2b} = 0
$$

\n
$$
2^{b} - 2^{a} - 2^{2a+b} + 2^{a+2b} = 0
$$

\n
$$
2^{b} - 2^{a} - 2^{2a+b} + 2^{a+2b} = 0
$$

\n
$$
f \text{ is injective}
$$

Example: $f(x) = \frac{x}{x+1}, x \neq -1$ (x) 2 $\overline{}$, $x \neq$ $+1$ =*xx* + 1 *xf x* $f(a) = f(b)$ $1 \quad b+1$ 22+= +*bbaa* $2^2(b+1)=b^2(a+1)$ 2 $a^2(b+1) = b^2(a+1)$ 2222 $a^2b+a^2=b^2a+b^2$ $b^2 + a^2 - b^2a - b^2 = 0$ 222 $a^2b + a^2 - b^2a - b^2 =$ *ab*(*a*−*b*)+(*a*−*b*)(*a*+*b*)=0 (*a*−*b*)(*ab*+*a*+*b*)=0 $a = b \lor ab + a + b = 0$ $\hspace{.01em} +1$ $a(b+1)=-b$ − $=$ $$ *bb* $a =$ — 2 1 $1+1$ ⁻¹ 1 $(1) = -$ 1) = $+1$ *f* =21 0.5 0.25 $0.5+1$ 0.5 0.25 $(-0.5) = \frac{0.6}{0.5}$ $0.5\,$) == $-0.5+1$ 0.5 *f* −=*f* is not one-to-one

Df. 4. If a function f is both injective and surjective, then f is called bijective (or bijection, or one-to-one onto function).

Df. 5. If $f: X \to Y$ is bijective, then the inverse function f^{-1} is defined as

$$
f^{-1}: Y \to X, \ f^{-1}(y) = x \Leftrightarrow f(x) = y,
$$

where $x \in X$, $y \in Y$.

Example:

$$
f: y = 1 - \sqrt{x - 2}, \quad x \ge 2
$$

\n
$$
\sqrt{x - 2} = 1 - y \qquad f^{-1}: y = x^2 - 2x + 3, \quad x \le 1
$$

\n
$$
x - 2 = (1 - y)^2
$$

\n
$$
x = 2 + (1 - y)^2
$$

\n
$$
f^{-1}: x = y^2 - 2y + 3, \quad y \le 1
$$

Corollaries (for real-valued functions of one real variable):

- \bullet If a point (a, b) belongs to the graph of function f, then point (b, a) belongs to the graph of function f^{-1} .
- Graphs of two mutually inverse functions are symmetricwith respect to line $y = x$ (the bisector of the first quadrant).

Df. 6. If $f: X \to Y$ and $g: Y \to Z$, then the composition of $g \text{ and } f$ is the function $h: Y \to Z$ such that $h(g) = g(f(g))$ g and f is the function $h: X \to Z$ such that $h(x) = g(f(x))$ for each *^x* from *^X*.

We write $h = g \circ f$ (f– inner function, g – outer function).

Example:

 $f(a) = a^2 + 1, g(b) = \sin b$ $(g \circ f)(x) = g(f(x)) = g(x^2 + 1) = \sin(x^2 + 1)$ $(f \circ g)(x) = f(g(x)) = f(\sin x) = \sin^2 x + 1$ Here $q \circ f \neq f \circ g$. **Example:** $h(x) = \sqrt{2x + 1}$ inner function $f(x) = 2x + 1$, outer function $g(x) = \sqrt{x}$.

 \bullet

Real-valued functions of one real variable

We consider functions of the type

 $f: D \to \mathbb{R}, D \subset \mathbb{R}.$

Df. 7. Function f is called periodic iff

$$
\exists_{T \neq 0} \forall_{x \in D} \ [x + T \in D \land f(x + T) = f(x)].
$$

Number *T* is then called a period of *f*. The least positive period of*f* is called the primitive period.

> Give examples of two different periodicfunctions which do not have primitive periods.

Df. 8. A function f is increasing on a set $A \subset D$ iff $\forall_{x_1, x_2 \in A} [x_1 < x_2 \Rightarrow f(x_1) < f(x_2)].$

Df. 9. A function f is decreasing on a set $A \subset D$ iff $\forall_{x_1, x_2 \in A}$ $[x_1 < x_2 \Rightarrow f(x_1) > f(x_2)].$

Df. 10. A function f is nonincreasing on a set $A \subset D$ iff $\forall_{x_1, x_2 \in A} [x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)].$

Df. 11. A function f is nondecreasing on a set $A \subset D$ iff $\forall_{x_1, x_2 \in A}$ $[x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)].$

Examples:

- 1) Function $y = \frac{1}{x}$ is decreasing on (−∞, 0) and on (0, +∞). But it is not decreasing on its domain! We say that it ispiecewise decreasing.
- 2) Similarly, function $y = \frac{1}{x^2}$ is piecewise monotonic.
- 3) Function $f(x) = x^4 2x^2 + 3$ is increasing on $(1, +\infty)$.
Indeed if $1 \le x \le x$ then Indeed, if $1 < x_1 < x_2$, then

$$
f(x_1) - f(x_2) = x_1^4 - 2x_1^2 + 3 - x_2^4 + 2x_2^2 - 3 =
$$

= $(x_1^4 - x_2^4) - 2(x_1^2 - x_2^2) =$
= $(x_1^2 - x_2^2)(x_1^2 + x_2^2) - 2(x_1^2 - x_2^2) =$
= $(x_1^2 - x_2^2)(x_1^2 + x_2^2 - 2) < 0$

so $f(x_1) < f(x_2)$.

=

Df. 12. Function f is called even iff

$$
\forall_{x \in D} \ \left[-x \in D \land f(-x) = f(x) \right].
$$

Its graph is symmetric with respect to *y*-axis.

Df. 13. Function f is called odd iff

$$
\forall_{x \in D} \ \big[-x \in D \land f(-x) = -f(x) \big].
$$

Its graph is symmetric with respect to the origin.

Df. 14. A function is bounded above (below) iff its range is bounded above (below).

If a function is bounded above and below then it is called bounded.

Elementary functions

Df. 15. The following four functions, defined on ℝ, are called basic elementary functions:

- unit function $U(x) = 1$,
- identity function $id(x) = x$,
- exponential function $exp(x) = e^x$,
- sine function $sin(x) = sin x$.

Df. 16. The following functions are called elementary functions:

- each basic elementary function;
- constant multiple of elementary function;
- sum, difference, product, quotient of two elementary functions;
- the composition of two elementary functions;
- the inverse function to an elementary function;
- an elementary function with restricted domain(of course if listed operations are feasible).

Power function $y = x^n, n \in \mathbb{N}, n -$ even

17

Quadratic function

$$
y = ax^{2} + bx + c
$$

\n
$$
y = a(x - p)^{2} + q
$$

\n
$$
\Delta = b^{2} - 4ac
$$

\n
$$
x_{1/2} = \frac{-b \pm \sqrt{\Delta}}{2a}
$$

\n
$$
p = -\frac{b}{2a}
$$

\n
$$
q = -\frac{\Delta}{4a}
$$

\nHence a > 0 and A >

Here $a > 0$ and $\Delta > 0$.

23

Properties of logarithms

$$
\log_a b = c \Leftrightarrow a^c = b \quad (a > 0, a \neq 1, b > 0)
$$

$$
\log_a b + \log_a c = \log_a (bc)
$$

$$
\log_a b - \log_a c = \log_a \frac{b}{c}
$$

$$
\log_a b^k = k \log_a b
$$

$$
\log_a b = \frac{\log_c b}{\log_c a} = \frac{\ln b}{\ln a}
$$

What we have to assume in formulae above?

Exponential and logarithmic functions

Some properties of hyperbolic functions

$$
\cosh^2 x - \sinh^2 x = 1
$$

sinh 2x = 2 sinh x cosh x
cosh 2x = cosh² x + sinh² x

Some properties of trigonometric functions

$$
\sin^2 x + \cos^2 x = 1
$$

\n
$$
\tan x \cot x = 1
$$

\n
$$
\sin(2x) = 2 \sin x \cos x
$$

\n
$$
\cos 2x = \cos^2 x - \sin^2 x =
$$

\n
$$
= 1 - 2\sin^2 x = 2\cos^2 x - 1
$$

\n
$$
\sin(x + y) = \sin x \cos y + \cos x \sin y
$$

\n
$$
\cos(x + y) = \cos x \cos y - \sin x \sin y
$$

\n
$$
\sin x + \sin y = 2 \sin \frac{x + y}{2} \cos \frac{x - y}{2}
$$

\n
$$
\cos x + \cos y = 2 \cos \frac{x + y}{2} \cos \frac{x - y}{2}
$$

\n
$$
\cos x - \cos y = -2 \sin \frac{x + y}{2} \sin \frac{x - y}{2}
$$

\n
$$
\cos x - \cos y = -2 \sin \frac{x + y}{2} \sin \frac{x - y}{2}
$$

\n
$$
\cos x \cos y = -2 \sin \frac{x + y}{2} \cos \frac{x - y}{2}
$$

\n
$$
\sin \left(\frac{3\pi}{2} + x\right) = -\cot x
$$

\n
$$
\cos x - \cos y = -2 \sin \frac{x + y}{2} \sin \frac{x - y}{2}
$$

\n
$$
\cos \left(\frac{3\pi}{2} + x\right) = \sin x
$$

39

Inverse trigonometric functions

40

Inverse trigonometric functions

 $y = \operatorname{arccot} x \Longleftrightarrow x = \operatorname{cot} y$, $x \in \mathbb{R}, y \in (0, \pi)$

Example. Show that:

- 1)) arcsin $x + \arccos x = \frac{\pi}{2}$ $\frac{\pi}{2}$ for $x \in \langle -1,1 \rangle;$
- 2)) $\arctan x + \arccot x =$ π $\frac{\pi}{2}$ for $x \in \mathbb{R}$;
-) sin(arcsin x) = x for $x \in \langle -1,1 \rangle;$ 3)
- 4)) $\arcsin(\sin x)=?$

CO

Elementary functions of several variables

Let us consider a real-valued function of n real variables, where n is fixed, natural and greater than 1.

$$
f: D \to \mathbb{R}, D \subset \mathbb{R}^n
$$

$$
y = f(x_1, x_2, \cdots, x_n)
$$

The following functions (the projection onto the *i*th coordinate) are basic elementary functions:

$$
\pi_i(x_1, x_2, \cdots, x_n) = x_i, \qquad i = 1, 2, \cdots, n.
$$

Elementary functions of several variables are functions obtainedfrom projections and their compositions with elementary functions
of an examinable has an until use listed in Df. 16 of one variable by operations listed in Df. 16.

Example:

The function $z(x, y) = 3x^2 + \ln(x - \sqrt{y})$ is elementary because

