PART 3 METRIC AND METRIC SPACES

Df. 1. Let *X* be a nonempty set. A metric (or distance function) on set *X* is a function $d: X \times X \rightarrow \mathbb{R}$ such that the following conditions are satisfied:

1)
$$\forall_{a,b\in X} d(a,b) = 0 \iff a = b$$

2)
$$\forall_{a,b\in X} d(a,b) = d(b,a)$$

3)
$$\forall_{a,b,c\in X} \ d(a,b) + d(b,c) \ge d(a,c).$$

Df. 2. An ordered pair (X, d), where d is a metric on nonempty set X, is called a metric space.

Examples:

1. A discrete metric on nonempty set *X*

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

2.
$$X = \mathbb{R}, d(a, b) = |a - b|$$

3.
$$X = \mathbb{C}, d(z_1, z_2) = |z_1 - z_2|$$

4.
$$X = \mathbb{R}^2$$
, $d(P(a, b), Q(c, d)) = \sqrt{(a - c)^2 + (b - d)^2}$

5. X – set of real-valued functions of one real variable, defined and bounded on (0,1)

$$d(f,g) = \sup_{x \in \langle 0,1 \rangle} |f(x) - g(x)|$$

Note: metrics 2-4 are called Euclidean metrics.

Examples:

Non Euclidean metrics on \mathbb{R}^2 :

1) taxi (NY) metric

$$d(P,Q) = |a - c| + |b - d|$$

2) river metric

$$d(P,Q) = \begin{cases} |b| + |d| + |a - c| & \text{if } a \neq c \\ |b - d| & \text{if } a = c \end{cases}$$

3) Rome (center) metric

$$d(P,Q) = \begin{cases} \sqrt{a^2 + b^2} + \sqrt{c^2 + d^2} & \text{if } \overrightarrow{OP} \not\parallel \overrightarrow{OQ} \\ \sqrt{(a-c)^2 + (b-d)^2} & \text{if } \overrightarrow{OP} \not\parallel \overrightarrow{OQ} \end{cases}$$

P(a,b),Q(c,d)

Points and sets in metric spaces

Let
$$X \neq \emptyset$$

 (X,d) – metric space
 $P,Q \in X$ – elements of X (called *points*)
 $S \subset X$ – subset of X.

Df. 3. A complement of S is the set $S' = X \setminus S$. **Remark:** (S')' = S, $X' = \emptyset$, $\emptyset' = X$, $S \cup S' = X$, $S \cap S' = \emptyset$.

Df. 4. A ball with center *P* and radius $\varepsilon > 0$ is the set $B(P, \varepsilon) = \{Q \in X: d(P, Q) < \varepsilon\}.$

→ otoczenie

Df. 5. A neighborhood of *P* is any ball with center *P*:

$$N_P = \operatorname{nbd}(P) = B(P, \varepsilon).$$

Df. 6. A deleted neighborhood of *P* is any ball with center *P* without the center:

 $D_P = B(P, \varepsilon) \setminus \{P\}.$

Df. 7. A set *S* is called **bounded** iff it is contained in some ball.

Df. 8. A point P is called the cluster point of S iff every deleted nbd of P contains at least one point of S.

Df. 9. A set *S* is called closed iff it contains all its cluster points.

Df. 10. The closure of set *S* is the smallest closed set containing *S* $cl(S) = \{P \in X : P \in S \lor P \text{ is the cluster point of } S\}.$

Df. 11. A point *P* is the interior point of *S* iff *P* has a nbd lying entirely in *S*. The set of all interior points is called the interior of *S* and it is denoted by Int(S)

$$Int(S) = \{ P \in S : \exists_{\varepsilon > 0} B(P, \varepsilon) \subset S \}.$$

Df. 12. A set *S* is called open iff every member of *S* has a nbd contained entirely in *S*, i.e.

$$\forall_{P \in S} \exists_{\varepsilon > 0} \quad B(P, \varepsilon) \subset S$$

or, equivalently, S = Int(S).

Df. 13. A point P from S is called the isolated point of S iff there exists a deleted nbd of P which contains no points of S, i.e.

$$\exists_{\varepsilon>0} B(P,\varepsilon) \cap S = \{P\}.$$

Df. 14. A point *P* is called the frontier point of *S* iff every nbd of *P* contains both points from *S* and points from *S'*. The set of all frontier points is called the frontier of *S* and it is denoted by Fr(S)

$$\operatorname{Fr}(S) = \left\{ P \in X : \exists_{\varepsilon > 0} \exists_{Q_1 \in S} \exists_{Q_2 \notin S} \{Q_1, Q_2\} \subset B(P, \varepsilon) \right\}.$$
⁷

Note 1: the frontier of *S* is made up of points which are either

• members of S and cluster points of S'

or

• members of S' and cluster points of S.

Note 2: the frontier of *S* is the set of all

• isolated points of S

and

• cluster points of *S* which are not interior points of *S*.

Df. 15. The diameter of a nonempty set S is the least upper bound of all distances between any two points of S: diam(S) = sup d(P, Q)

 $\operatorname{diam}(S) = \sup_{P,Q \in S} d(P,Q).$

Df. 16. A region is a nonempty open subset R of \mathbb{R}^2 whose any two points can be joined by a polygonal arc lying entirely in R.

Df. 17. A closed region = cl(R), where R is a region.