
PART 5

LIMITS OF FUNCTIONS
AND CONTINUITY



The definition of limit of function f at 
point a
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Theorem 1. The Cauchy and Heine definitions of limit of
function at a point are equivalent.

Proof AFCC
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The Heine definitions of one-sided
limits
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The Cauchydefinitions of one-sided
limits
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Theorem 2. If                             then)Int(Da ∈
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The Heine definitionof improper limits
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The Cauchydefinition of improper limits
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The Heine definition of one-sided
improper limits (1)
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The Heine definition of one-sided
improper limits (2)
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The Cauchy definition of one-sided 
improper limits (1)
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The Cauchy definition of one-sided 
improper limits (2)
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The Heine definition of limit at infinity
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The Cauchy definition of limit at infinity
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The Heine definitions of improper 
limits at infinity (1)
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The Heine definitions of improper 
limits at infinity (2)
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The Cauchydefinitions of improper 
limits at infinity (1)
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The Cauchydefinitions of improper 
limits at infinity (2)
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Theorem 3. If f and g are real (or complex) functions, 
a is the cluster point of domains of both functions, and
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Proof: Apply the Heine definition and Th.6/Part 4.
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Theorem 4. If 

• f , g, h are real-valued functions, 

• a is the cluster point of domains of all functions, 

• in some nbd of a, 

•

then
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Important limits
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Continuity

• f is continuous at a point

• f is continuous on a set

• f is continuous
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The definition of function continuous at 
a point
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Da ∈

a is the cluster 
point of D

a is the isolated 
point of D

WHEN A FUNCTION IS CONTINUOUS AT A POINT?
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We say that f is continuous on setA (where A is a
subset of domain off ) iff f is continuous at each point
from A.

We say that  f is continuousiff f is continuous at each 
point of its domain.
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Discontinuities

If a belongs to the domain of  f and f is not continuous at  a, 
the we say that  f is discontinuousat  a.

Note: if a is not the member of domain, then we do not define 
continuity at this point.

Points of discontinuity(or discontinuities) :

• members of domain at which function is discontinuous

or

• cluster points of domain which are not members of 
domain
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Classification of discontinuities of 
real-valued functions of one real variable

I type
a) removable

b b

b) finite jump

b b b
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Classification of discontinuities of 
real-valued functions of one real variable

II type
a) infinite jump

b b b

b) oscillating discontinuity as                          at 0
x

xf
1

sin)( =

c) other
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Find an example of a function

• that is continuous at exactly one 
point;

• such that  f 2 is continuous butf is 
discontinuous at each real number;

• that is continuous at each rational 
number and discontinuous at each 
irrational number.

	�: ℝ → ℝ
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Properties of continuous functions

Theorem 5. If f and g are real-valued functions both 
continuous at a, then functions 

• kf (k – real constant)

• f + g

• f g

• )0)(where( ≠ag
g

f

are continuous at a.

Proof: Apply the Heine definition and Th.6/Part 4.
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Theorem 6. If � is continuous at
 and� is continuous at

� = � 
 , then � ∘ �	 is continuous ata.
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Theorem 7. The inverse of a strictly monotonic continuous 
function is continuous in the interval where it is defined.

The continuity of inverse function is not an easy matter.

Show that Th. 7 gives sufficient but 
not necessary condition for continuity 
of inverse function.
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Theorem 8. Each basic elementary function is continuous.

Proof AFCC

Note: elementary functions are ‘usually’ continuous. 
Find an elementary function which is discontinuous 
at some point.

Hint: keep a close watch on Th. 7.
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Theorem 9. If  function  � is continuous at  
 and	� 
 > 0, 
then there exists a nbd of 
 such that for each � from this nbd
we have � � > 0, i.e.:
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Theorem 10 (Intermediate Value Theorem). If function �

is continuous on
, � , then� has the Darboux property on

, � . That is, if� is any value between�(
) and�(�), then

there exists& ∈ 
, � such that� & = � .

Note: discontinuous functions also may have the Darboux property.

Theorem 11. If function � is continuous on 
, � and
� 
 � � < 0, then there exists& ∈ 
, � such that� & = 0 .

Proof: Directly from Th.10.

Note: explain the practical meaning of this theorem.
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Theorem 12 (the Weierstrass Theorem). If function f is
continuous on
, � , then it takes on both global minimum
and global maximumvalues in the interval.

Th.10

Corollary 1. If function f is continuous on
, � then it
bounded.

Corollary 2. If function f is continuous on
, � then its
range is equal to (,) where ( and ) are global
minimumand global maximum, respectively.

Find an example of a functionf such that*+ ≠ (,) . 
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Df. 1. The oscillationof function f is defined as the difference 
between its global maximum and global minimum:

mM −=ω

Df. 2. The partition of  
, � is defined as the set

-. = �/, �0 , �0, �1 , �1, �2 , … , �.40, �.

where�/, �0, �1, … , �.	 are arbitrarily chosen points such that


 = �/ < �0 < �1 < ⋯ < �. = �.

Theorem 13. If function f is continuous on
, � , then there
exists the partition of 
, � such that the oscillation in each
subinterval is less than any arbitrarily chosen positive number, i.e.:

∀89/∃.∈ℕ∀0<=<.		>= = )= −(= < ?.
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Asymptotes

Df. 3. The curve!	 = 	�(�)	hasvertical asymptote�	 = 	
			

iff
.)(limor)(lim ±∞=±∞=

−+ →→
xfxf

axax

Df. 4. The curve!	 = 	�(�)	hashorizontal asymptote!	 = 	�	

iff
.)(limor)(lim bxfbxf

xx
==

−∞→+∞→

38



Df. 5. The curve !	 = 	�(�)	has slant asymptote!	 = 	
� + �	
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• has infinitely many vertical asymptotes?

• has 3 different horizontal asymptotes?

• has simultaneously vertical, horizontal and slant 
asymptotes?

• intersects its asymptote?

• has vertical asymptote if�� = ℝ?

IS IT POSSIBLE THAT THE GRAPH OF A FUNCTION
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