PART 5 LIMITS OF FUNCTIONS AND CONTINUITY

The definition of limit of function *f* at point *a*

 (X, d_X) , (Y, d_Y) – metric spaces : $D \to Y, D \subset X, a$ – cluster point of $f: D \to Y, D \subset X, a$ – cluster point of D

$$
\lim_{x \to a} f(x) = L \Leftrightarrow \bigvee_{\{x_n\} \atop x_n \neq a} \left[\lim_{n \to a} x_n = a \Rightarrow \lim_{n \to a} f(x_n) = L \right]
$$
\nHeine

possible convergence in different metric spaces

$$
\lim_{x \to a} f(x) = L \Leftrightarrow \qquad \text{Cauchy}
$$
\n
$$
\Leftrightarrow \forall_{\varepsilon > 0} \exists_{\delta > 0} \forall_{x \in D} \left[0 < d_X(x, a) < \delta \Rightarrow d_Y(f(x), L) < \varepsilon \right]
$$

possible different metrics

Theorem 1. The Cauchy and Heine definitions of limit of function at ^a point are equivalent.

Examples:

The Heine definitions of one-sidedlimits

 $f: D \to Y, D \subset \mathbb{R}, \quad a$ – cluster point of D, $\mathbb{R}, | \ |$), $(Y, d$ ₎ $_Y$) – metric spaces

$$
\lim_{x \to a^{+}} f(x) = L \Longleftrightarrow \bigvee_{\{x_{n}\}_{n \in D} \atop x_{n} > a} \left[\lim_{n} x_{n} = a \Longrightarrow \lim_{n} f(x_{n}) = L \right]
$$

$$
\lim_{x \to a^{-}} f(x) = L \Longleftrightarrow \bigvee_{\{x_n\}\atop x_n \in D} \left[\lim_{n \to a} x_n = a \Rightarrow \lim_{n \to a} f(x_n) = L \right]
$$

The Cauchy definitions of one-sided limits

 $f: D \to Y, D \subset \mathbb{R}$, a – cluster point of D, $(\mathbb{R}, \vert \vert)$, (Y, d_Y) – metric spaces

$$
\lim_{x \to a^{+}} f(x) = L \Leftrightarrow
$$
\n
$$
\Leftrightarrow \forall_{\varepsilon > 0} \exists_{\delta > 0} \forall_{x \in D} [a < x < a + \delta \Rightarrow d_{Y}(f(x), L) < \varepsilon]
$$
\n
$$
\lim_{x \to a^{+}} f(x) = L \Leftrightarrow
$$

$$
\lim_{x \to a^{-}} f(x) = L \Leftrightarrow
$$
\n
$$
\Leftrightarrow \forall_{\varepsilon > 0} \exists_{\delta > 0} \forall_{x \in D} \big[a - \delta < x < a \Rightarrow d_{Y}(f(x), L) < \varepsilon \big]
$$

Theorem 2. If
$$
a \in Int(D)
$$
 then
\n
$$
\lim_{x \to a} f(x) = L \Leftrightarrow \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L
$$

Note 1: if
$$
D = (a,b)
$$
, then $\lim_{x \to a} f(x) = \lim_{x \to a^+} f(x)$.

Note 2: Th. 2 may be generalized. How?

The Heine definition of improper limits

 $f: D \to \mathbb{R}, D \subset X$, a – cluster point of D, $\mathbb{R}, | \ |$), (X, d) $_X$) – metric spaces

$$
\lim_{x \to a} f(x) = +\infty \iff \forall \lim_{\substack{\{x_n\} \\ x_n \in D}} \lim_{n} x_n = a \implies \lim_{n} f(x_n) = +\infty
$$

$$
\lim_{x \to a} f(x) = -\infty \iff \forall \lim_{\substack{x_n \in D \\ x_n \neq a}} \lim_{n} x_n = a \implies \lim_{n} f(x_n) = -\infty
$$

7

The Cauchy definition of improper limits

 $f: D \to \mathbb{R}, D \subset X$, a – cluster point of D, $(\mathbb{R}, \vert \vert)$, (X, d_X) – metric spaces

$$
\lim_{x \to a} f(x) = +\infty \Leftrightarrow
$$
\n
$$
\Leftrightarrow \forall_M \exists_{\delta > 0} \forall_{x \in D} \left[0 < d_X(x, a) < \delta \Rightarrow f(x) > M \right]
$$

$$
\lim_{x \to a} f(x) = -\infty \Leftrightarrow
$$

$$
\Leftrightarrow \forall_m \exists_{\delta > 0} \forall_{x \in D} \left[0 < d_X(x, a) < \delta \Rightarrow f(x) < m \right]
$$

The Heine definition of one-sidedimproper limits (1)

> $f: D \to \mathbb{R}, D \subset \mathbb{R}, \quad a$ – cluster point of D, $(\mathbb{R}, ||)$ – metric space

$$
\lim_{x \to a^{+}} f(x) = +\infty \Leftrightarrow \forall \quad \left[\lim_{n \to a^{-}} x_{n} = a \Rightarrow \lim_{n \to a} f(x_{n}) = +\infty \atop \lim_{n \to a^{-}} x_{n} \ge a} \lim_{n \to a^{-}} f(x) = +\infty \Leftrightarrow \forall \quad \left[\lim_{n \to a^{-}} x_{n} = a \Rightarrow \lim_{n \to a} f(x_{n}) = +\infty \atop \lim_{n \to a^{-}} x_{n} \le a} \right]
$$

The Heine definition of one-sidedimproper limits (2)

> $f: D \to \mathbb{R}, D \subset \mathbb{R}, a$ – cluster point of D, $(\mathbb{R}, ||)$ – metric space

$$
\lim_{x \to a^{+}} f(x) = -\infty \Leftrightarrow \forall \lim_{\substack{x_n \in D \\ x_n \ge a \\ x \to a^{-}}} \left[\lim_{n} x_n = a \Rightarrow \lim_{n} f(x_n) = -\infty \right]
$$
\n
$$
\lim_{x_n \to a^{-}} f(x) = -\infty \Leftrightarrow \forall \lim_{\substack{x_n \in D \\ x_n \in D \\ x_n < a}} \left[\lim_{n} x_n = a \Rightarrow \lim_{n} f(x_n) = -\infty \right]
$$

10

The Cauchy definition of one-sided improper limits (1)

> $f: D \to \mathbb{R}, D \subset \mathbb{R}, \quad a$ – cluster point of D, $(\mathbb{R}, ||)$ – metric space

$$
\lim_{x \to a^{+}} f(x) = +\infty \Leftrightarrow
$$

$$
\Leftrightarrow \forall_{M} \exists_{\delta > 0} \forall_{x \in D} [a < x < a + \delta \Rightarrow f(x) > M]
$$

$$
\lim_{x \to a^{-}} f(x) = +\infty \Leftrightarrow
$$

$$
\Leftrightarrow \forall_{M} \exists_{\delta > 0} \forall_{x \in D} [a - \delta < x < a \Rightarrow f(x) > M]
$$

The Cauchy definition of one-sided improper limits (2)

 $f: D \to \mathbb{R}, D \subset \mathbb{R}, \quad a$ – cluster point of D, $(\mathbb{R}, ||)$ – metric space

$$
\lim_{x \to a^{+}} f(x) = -\infty \Leftrightarrow
$$

$$
\Leftrightarrow \forall_{m} \exists_{\delta > 0} \forall_{x \in D} [a < x < a + \delta \Rightarrow f(x) < m]
$$

$$
\lim_{x \to a^{-}} f(x) = -\infty \Leftrightarrow
$$

$$
\Leftrightarrow \forall_{m} \exists_{\delta > 0} \forall_{x \in D} [a - \delta < x < a \Rightarrow f(x) < m]
$$

The Heine definition of limit at infinity

 $f: D \to Y, D \subset \mathbb{R}, D$ – unbounded above, $\mathbb{R}, | \ |$), $(Y, d$ ₎ $_Y$)– metric spaces

$$
\lim_{x \to +\infty} f(x) = L \Leftrightarrow \bigvee_{\{x_n\} \atop x_n \in D} \left[\lim_{n} x_n = +\infty \Rightarrow \lim_{n} f(x_n) = L \right]
$$
\n
$$
f: D \to Y, D \subset \mathbb{R}, D-\text{unbounded below,}
$$
\n
$$
(\mathbb{R}, | \cdot |), (Y, d_Y) - \text{metric spaces}
$$
\n
$$
\lim_{x \to -\infty} f(x) = L \Leftrightarrow \bigvee_{\{x_n\} \atop x_n \in D} \left[\lim_{n} x_n = -\infty \Rightarrow \lim_{n} f(x_n) = L \right]
$$

13

The Cauchy definition of limit at infinity

 $f: D \to Y, D \subset \mathbb{R}, D$ – unbounded above, $\mathbb{R}, | \ |$), $(Y, d$ ₎ $_Y$)– metric spaces

 $\Leftrightarrow \forall_{\varepsilon>0} \exists_{\delta} \forall_{x \in D} [x > \delta \Rightarrow d_Y(f(x), L) < \varepsilon]$ $\lim f(x) = L \Leftrightarrow$ >∪−∂ ' *x*∈ →+∞*x* $\nabla_{\varepsilon>0} \exists_{\delta} \forall_{x \in D} [x > \delta \Rightarrow d_Y(f(x), L)]$

 $f: D \to Y, D \subset \mathbb{R}, D$ – unbounded below, $\mathbb{R}, | \ |$), $(Y, d$ ₎ $_Y$)– metric spaces

$$
\lim_{x \to -\infty} f(x) = L \Leftrightarrow
$$
\n
$$
\Leftrightarrow \forall_{\varepsilon > 0} \exists_{\delta} \forall_{x \in D} \left[x < \delta \Rightarrow d_Y(f(x), L) < \varepsilon \right]
$$

The Heine definitions of improper limits at infinity (1)

> $f: D \to \mathbb{R}, D \subset \mathbb{R}, D$ – unbounded above, $(\mathbb{R}, ||)$ – metric space

$$
\lim_{x \to +\infty} f(x) = +\infty \iff \forall \lim_{\substack{x_n \to +\infty \\ x_n \in D}} \lim_{n} x_n = +\infty \implies \lim_{n} f(x_n) = +\infty
$$

$$
\lim_{x \to +\infty} f(x) = -\infty \iff \forall \lim_{\substack{x_n \to +\infty \\ x_n \in D}} \lim_{n} x_n = +\infty \implies \lim_{n} f(x_n) = -\infty
$$

The Heine definitions of improper limits at infinity (2)

> $f: D \to \mathbb{R}, D \subset \mathbb{R}, D -$ unbounded below, $(\mathbb{R}, ||)$ – metric space

$$
\lim_{x \to -\infty} f(x) = +\infty \iff \forall \lim_{\substack{x_n \to 0 \\ x_n \in D}} \lim_{n} x_n = -\infty \implies \lim_{n} f(x_n) = +\infty
$$

$$
\lim_{x \to -\infty} f(x) = -\infty \iff \forall \lim_{\substack{\{x_n\} \\ x_n \in D}} \left[\lim_{n} x_n = -\infty \implies \lim_{n} f(x_n) = -\infty \right]
$$

The Cauchy definitions of improper limits at infinity (1)

> $f: D \to \mathbb{R}, D \subset \mathbb{R}, D$ – unbounded above, $(\mathbb{R}, ||)$ – metric space

$$
\lim_{x \to +\infty} f(x) = +\infty \Leftrightarrow \forall_M \exists_{\delta} \forall_{x \in D} [x > \delta \Rightarrow f(x) > M]
$$

 $f(x) = -\infty \Leftrightarrow \forall_m \exists_{\delta} \forall_{x \in D} [x > \delta \Rightarrow f(x) < m]$ *x*→+∞ $\lim_{n \to +\infty} f(x) = -\infty \Leftrightarrow \forall_m \exists_{\delta} \forall_{x \in D} | x > \delta \Rightarrow f(x)$

The Cauchy definitions of improper limits at infinity (2)

> $f: D \to \mathbb{R}, D \subset \mathbb{R}, D -$ unbounded below, $(\mathbb{R}, ||)$ – metric space

$$
\lim_{x \to -\infty} f(x) = +\infty \Leftrightarrow \forall_M \exists_{\delta} \forall_{x \in D} \big[x < \delta \Rightarrow f(x) > M \big]
$$

 $f(x) = -\infty \Leftrightarrow \forall_m \exists_{\delta} \forall_{x \in D} [x < \delta \Rightarrow f(x) < m]$ *x*→−∞ $\lim_{n \to \infty} f(x) = -\infty \Leftrightarrow \forall_m \exists_{\delta} \forall_{x \in D} | x < \delta \Rightarrow f(x)$

Theorem 3. If *f* and *^g* are real (or complex) functions, *a* is the cluster point of domains of both functions, and

$$
\lim_{x \to a} f(x) = F, \lim_{x \to a} g(x) = G, \text{ then :}
$$

- 1) $\lim_{x \to a} [f(x) + g(x)] = F + G$ $x \rightarrow a$
- 2) $\lim_{x \to a} [kf(x)] = kF \quad (k \in \mathbb{R})$ $x \rightarrow a$

3)
$$
\lim_{x \to a} [f(x) \cdot g(x)] = FG
$$

4)
$$
\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{F}{G}
$$
 $(g(x) \neq 0, G \neq 0).$

Proof:Apply the Heine definition and Th.6/Part 4.

Theorem 4. If

- *f* , *g, ^h* are real-valued functions,
- *^a* is the cluster point of domains of all functions,
- in some nbd of *a*, $f(x) \le g(x) \le h(x)$,

$$
\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L
$$

then
$$
\lim_{x \to a} g(x) = L
$$
.

Proof:Apply the Heine definition and Th.5/Part 4.

Important limits

CAN YOU DERIVE THESE LIMITS?

Continuity

- *f* is continuous at a point
- *f* is continuous on a set
- *f* is continuous

The definition of function continuous at a point

 $(X, d_X), (Y, d_Y)$ – metric spaces $f: D \to Y, D \subset X, a \in D$ X *, d*_{*X*})*,* (Y, d_Y) - metri

Function*f* is continuous at point *a* iff

$$
\bigtriangledown \lim_{\{x_n\}\atop x_n \in D} \left[\lim_n x_n = a \Rightarrow \lim_n f(x_n) = f(a) \right]
$$

or, equivalently,

{

$$
\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x \in D} \big[d_X(x, a) < \delta \Rightarrow d_Y(f(x), f(a)) < \varepsilon \big].
$$

WHEN A FUNCTION IS CONTINUOUS AT A POINT?

We say that f is continuous on set A (where A is a subset of domain of *f*) iff *f* is continuous at each point from *^A*.

We say that *f* is continuous iff *f* is continuous at each point of its domain.

Discontinuities

If <u>a belongs to the domain</u> of f and f is not continuous at a, the we say that *f* is discontinuous at *a*.

Note: if *a* is not the member of domain, then we do not define continuity at this point.

Points of discontinuity (or discontinuities) :

- members of domain at which function is discontinuous
- or

• cluster points of domain which are not members of domain

Classification of discontinuities of real-valued functions of one real variable

Classification of discontinuities of real-valued functions of one real variable

c) other

Find an example of a function $f: \mathbb{R} \to \mathbb{R}$

- that is continuous at exactly one point;
- such that f^2 is continuous but f is discontinuous at each real number;
- that is continuous at each rational number and discontinuous at each irrational number.

Properties of continuous functions

Theorem 5. If f and g are real-valued functions both continuous at *^a*, then functions

- *kf* (*k* real constant)
- •*f*+*g*
- \bullet f g \cdot *f*_{*g*} \cdot •(where *g* $\left($ *a*) ≠0 $\frac{g}{g}$ (where $g(a) \neq 0$) *f*

are continuous at *a*.

Proof:Apply the Heine definition and Th.6/Part 4.

Theorem 6. If f is continuous at a and g is continuous at $b = f(a)$, then $g \circ f$ is continuous at a.

Proof:

$$
\lim_{x \to a} f(x) = f(a) = b
$$
\n
$$
\lim_{y \to b} g(y) = g(b) = g(f(a))
$$
\n
$$
h(x) = (g \circ f)(x) = g(f(x))
$$
\n
$$
\lim_{x \to a} h(x) = \lim_{x \to a} g(f(x)) = \left| \int_{x \to a} f(x) dx \right| = y
$$
\n
$$
= g(f(a)) = h(a)
$$

The continuity of inverse function is not an easy matter.

Theorem 7. The inverse of a strictly monotonic continuous function is continuous in the interval where it is defined.

Show that Th. 7 gives sufficient but not necessary condition for continuity of inverse function.

Theorem 8. Each basic elementary function is continuous.

Note: elementary functions are 'usually' continuous. Find an elementary function which is discontinuous at some point.

Hint: keep a close watch on Th. 7.

Theorem 9. If function f is continuous at a and $f(a) > 0$, then there exists a nbd of α such that for each x from this nbd we have $f(x) > 0$, i.e.:

$$
\exists_{\delta>0} \forall_{x \in D} |x - a| < \delta \Rightarrow f(x) > 0.
$$

Proof:

$$
\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x \in D} \left[x - a \middle| < \delta \Rightarrow \middle| f(x) - f(a) \middle| < \varepsilon \right]
$$
\n
$$
\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x \in D} \left[x - a \middle| < \delta \Rightarrow f(a) - \varepsilon < f(x) < f(a) + \varepsilon \right]
$$
\nLet $\varepsilon < f(a)$ positive positive positive

Theorem 10 (Intermediate Value Theorem). If function f is continuous on $\langle a, b \rangle$, then f has the Darboux property on (a, b) . That is, if d is any value between $f(a)$ and $f(b)$, then there exists $c \in (a, b)$ such that $f(c) = d$.

Note: discontinuous functions also may have the Darboux property.

Theorem 11. If function f is continuous on $\langle a,b \rangle$ and $f(a) f(b) < 0$ then there exists $a \in (a, b)$ such that $f(a) = 0$ $f(a)f(b) < 0$, then there exists $c \in (a, b)$ such that $f(c) = 0$.

Proof: Directly from Th.10.

Note: explain the practical meaning of this theorem.

Theorem 12 (the Weierstrass Theorem). If function f is continuous on (a, b) then it takes on hoth global minimum continuous on $\langle a, b \rangle$, then it takes on both global minimum and global maximum values in the interval.

Corollary 1. If function f is continuous on $\langle a, b \rangle$ then it bounded.

Corollary 2. If function f is continuous on $\langle a, b \rangle$ then its range is equal to $\langle m, M \rangle$ where m and M are global movimum respectively. minimum and ^global maximum, respectively.

Find an example of a function *f* such that $R_f \neq \langle m, M \rangle$.

Df. 1. The oscillation of function *f* is defined as the difference between its global maximum and global minimum:

$$
\omega = M - m
$$

Df. 2. The partition of $\langle a, b \rangle$ is defined as the set

$$
P_n = \{ (x_0, x_1), (x_1, x_2), (x_2, x_3), \dots, (x_{n-1}, x_n) \}
$$

where $x_0, x_1, x_2, ..., x_n$ are arbitrarily chosen points such that

$$
a = x_0 < x_1 < x_2 < \dots < x_n = b.
$$

Theorem 13. If function f is continuous on $\langle a, b \rangle$, then there exists the position in each exists the partition of $\langle a, b \rangle$ such that the oscillation in each subinterval is less than any arbitrarily chosen positive number, i.e.:

$$
\forall_{\varepsilon>0} \exists_{n\in\mathbb{N}} \forall_{1\leq i\leq n} \ \omega_i = M_i - m_i < \varepsilon.
$$

Asymptotes

Df. 3. The curve $y = f(x)$ has vertical asymptote $x = a$ iff $\lim_{x \to a^+} f(x) = \pm \infty$ or $\lim_{x \to a^-} f(x) = \pm \infty$. $\lim_{x \to a^+} f(x) = \pm \infty$ or $\lim_{x \to a^-} f(x)$

Df. 4. The curve $y = f(x)$ has horizontal asymptote $y = b$ iff

$$
\lim_{x \to +\infty} f(x) = b \quad \text{or} \quad \lim_{x \to -\infty} f(x) = b.
$$

Df. 5. The curve $y = f(x)$ has slant asymptote $y = ax + b$ iff

$$
\lim_{x \to +\infty} [f(x) - (ax + b)] = 0 \text{ or } \lim_{x \to -\infty} [f(x) - (ax + b)] = 0.
$$

Theorem 14. The line $y = ax + b$ is the slant asymptote of curve $y = f(x)$ iff

$$
\begin{cases}\n a = \lim_{x \to +\infty} \frac{f(x)}{x} & \text{or} \\
b = \lim_{x \to +\infty} [f(x) - ax] & \end{cases}\n\quad\n\begin{cases}\n a = \lim_{x \to -\infty} \frac{f(x)}{x} \\
b = \lim_{x \to -\infty} [f(x) - ax].\n\end{cases}
$$

IS IT POSSIBLE THAT THE GRAPH OF A FUNCTION

- has infinitely many vertical asymptotes?
- has 3 different horizontal asymptotes?
- has simultaneously vertical, horizontal and slant asymptotes?
- intersects its asymptote?
- has vertical asymptote if $\ D$ $_{f} = \mathbb{R}$?