PART 5
LIMITS OF FUNCTIONS

AND CONTINUITY



The definition of limit of functiorf at
pointa

f:D -Y,DU0UOX,a-clusterpointof D
(X,dy), (Y,dy) — metricspaces

im f(x)=L « O [Iim x =a=lim f(x,)= L} Heine
X—a

{xn} n n
XpD
XnZa

possible convergence in different metric spaces

Im f(X)=L = Cauchy

X-a

o Opnolmolyp [0< dy (x,@) < I = dy (F(X), L) < é]

PRSI

possible different metrics



Theorem 1. The Cauchy and Heine definitions of limit of
function at a point are equivalent.

Proof | > AFCC
Examples:
: 1-Xx 1 _ X +
1) im == 3) lim Y = _3
x-22X+1 5 (X,y) - 1L2) X— Y
.| x] A x—-1 |
2)lIim . does not exist 4) xoan 1=y does not exist
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The Heine definitions of onesided
limits

f:D-Y,DcR, a- clusterpoint oD,

(R, | ), (Y,dy) — metric spaces

im f(x)=L = [ [Iim X =a=lim f(xn):L}
X-a {30} n n

XpUD
Xn>a

im f(X)=L = O [Iim x, =a= lim f(xn):L}
X—>a %0} n n



The Cauchyefinitions of onesided
limits

f:D-Y,DcR, a- clusterpoint oD,

(R, | ), (Y,dy) — metric spaces

im f(x)=L -

X-a

= Opsolhsodympla< x<a+d= dy (f(x),L) <g]

im f(x)=L

X-a

= Opsolhsodymla-0 < x<a=dy (f(x),L) <]
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Theorem 2. If allInt(D) then

im f()=L ~ lim_f(x)=lm f(x)=L

X-a X-a

Note L:if D= (ab), then lim f(x)= lim_f(x).

X-a X-a

Note 2:Th. 2 may be generalized. How?



The Heine definitiorof improper limits

f:D—-R,DcX, a- clusterpoint oD,
(R, | ), (X,dx) — metric spaces

im £ (x) =40~ [ [Iim X, =a= lm f(x,) :+oo}
X->a {Xn} n n

XpID

xn#a

im f(x) =00 - O [Iim X, =a= lim f(xn):—oo}
X—-a

{ %} n n
XpID

XnZa



The Cauchydefinition of improper limits

f:D - R,D c X, a— cluster point oD,
(R, | ), (X,dx) — metric spaces

im () = +o0 o
X-a

o Oy Osso0,op [0 < dy (x,@) <= f(X) >M]

im f(x) = -0 o
X->a

o O Ossod,p0<dy (x,@) <= f(x) <m]



The Heine definition of onsided
Improper limits (1)

f:D—-RDcR, a- clusterpoint oD,
(R, | |) — metric space

X-a

im f(x)=+0 o [

X—->a—

n n

im_f(x) =40 « [ [Iim x. =a=lim f(x,) :+oo}

{Xn}
XpnLD
Xn>a

[Iim X =a=slim f(x,)= +oo}
{xn} n n

XptD
Xn<a



The Heine definition of onsided
Improper limits (2)

f:D - R,DcRR, a-— cluster point oD,
(R, | |) — metric space

im f(X)= -0 = 0 [Iim X =a=slim f(xn):—oo}
X—>a+ {Xn} n n

XpD

Xn>a
im f(xX)= -0 = 0 [Iim X =a=>lim f(xn):—oo}
X—-a {xn} n n

XpnID
Xn<a
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The Cauchy definition of onsided
improper limits (1)

f:D—-RDcR, a- clusterpoint oD,
(R, | |) — metric space

im_f(x) =+
X-’a

o Oy OoOypla<x<a+d= f(x) >M]

im f(X) =+ =
X-a

o Oy Osso0ypla-0<x<a= f(x)>M]
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The Cauchy definition of onsided
iImproper limits (2)

f:D—-RDcR, a- clusterpoint oD,
(R, | |) — metric space

im_f(x) =0
X—-a

o O Osedypla<x<a+d= f(x)<m|

im f(x) = =
X-a

o DmD5>ODXmD[a—5< Xx<a= f(x)< m]
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The Heine definition of limit at infinity

f:D-Y,DcR, D—unbounded above,
(R, | ), (Y, dy)— metric spaces

im f()=L = 0 [Iim X, =400 =5 lim f(x.) = L}
X - +00 {Xn} n n
XpnD

f:D-Y,DcR, D—unbounded below
(R, | ), (Y, dy)— metric spaces

im f()=L « 0 [Iim X, = o0 =5 im f(xn):L}
X - —00 [} n n

XpD

13



The Cauchy definition of limit at infinity

f:D-Y,DcR, D—unbounded above,
(R, | ), (Y, dy)— metric spaces

im f(x)=L =

X — +00

= D£>OD5DXDD[X >0=dy(T(X),L)< 5]

f:D-Y,DcR, D—unbounded below
(R, | ), (Y, dy)— metric spaces

im f(x)=L =

X—- —00

= D£>OD5DXDD[X <0=dy(T(x),L)< 5]
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The Heine definitios of improper
limits at infinity (1)

f:D - R,D c R, D—unbounded above,
(R, | |) — metric space

im f(x) =+ o« [ [Iim X, =+ = lim f(x,) :+oo}
X = oo Oy LN n

XpnLD

im f(x)=-0 o O [Iim X = +00 = lim (x,) = —oo}
X oo {xn} n n
XptD
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The Heine definitioa of improper
limits at infinity (2)

f:D - R,D cR, D—unbounded below
(R, | |) — metric space

im f(x) =+ « [ [Iim X, = 0 = lim f(x,) :+oo}
X=me gy LD n

XpnLD

im f(X)=-0 o [ [Iim X =—00 = lim f(x,) = —oo}
X— =0 {xn} n n

XptD
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The Cauchyefinitions of improper
limits at infinity (1)

f:D - R,D c R, D—unbounded above,
(R, | |) — metric space

im £ (X) =+0 = Oy Os0,p[x>0= f(X)>M]

X —» +00

im f(X)=—0 < 0,00, [x>d= f(x)<m]

X —» +00
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The Cauchyefinitions of improper
limits at infinity (2)

f:D - R,D cR, D—unbounded below
(R, | |) — metric space

im £ (X) =+ = Oy Ds0,plx<d= f(x)>M]

X— —00

im f(X)=—0 < 0,.00,p[x<d= f(x)<m]

X - —00
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Theorem 3. If f andg are real (or complex) functions,
ais the cluster point of domains of both functions, and

im f(xX)=F, Im g(x) =G, then:
X—a X-a

D) Im[f(X)+g(X)]=F+G

2) lim[kf ()] =kF  (k € R)

3) lim[f(x)(g(x)]=FG
f(x) F

4) 'X'Tag(x) = (900 #0,G#0)

Proof: Apply the Heine definition and Th.6/Part 4. .
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Theorem 4. If
 f, g, hare real-valued functions,

* ais the cluster point of domains of all functions,

e in some nbd o, T (X) < g(x) < h(x),
. lim £ (x) = lim h(x) = L
X->a X->a

then lim g(x) = L.
X—-a

Proof: Apply the Heine definition and Th.5/Part 4.
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Important limits

SN X

) lim>—==1 .
*-0 X 4) lim (1+x)x =e
. 1 X X—»O
2) lim (1+—j =e
e 5) | Oa loiha (a>0)
X —
3) lim (1+—j —e
X —> —00 X

CAN YOU DERIVE THESE LIMITS?
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Continuity

o f IS continuous at a point
o f IS continuous on a set

e f IS continuous
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The definition of function continuous at
a point

f:D-Y,D0OX,allD
(X,dy), (Y,dy) — metricspaces

Functionf Is continuous at poird iff

n [IiLn X, =a=lim f(x,) = f(a)]

{xn}
XnDD

or, equivalently,
Oes0Cas00p [dx (x,2) < 3= dy ( (%), T (a)) < &)
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WHEN A FUNCTION ISCONTINUOUSAT A POINT?

allD

/\

ais the cluster ais the isolated
point of D point of D
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We say that f is continuous on seA (whereA is a
subset of domain of ) iff fis continuous at each point
from A.

We say thatf is continuoudff f is continuous at each
point of its domain.
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Discontinuities

If abelongs to the domain dfand f is not continuous &,
the we say that is discontinuousat a.

Note: ifais not the member of domain, then we do not define
continuity at this point.

Points of discontinuityor discontinuitie$ :
» members of domain at which function is discontinuous
or

o cluster points of domain which are not members of
domain
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Classification of discontinuities of
real-valued functions of one real variable

| type
a) removable

b b

b) finite jump
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Classification of discontinuities of
real-valued functions of one real variable

a) infinite jJump

e
|

Cc) other

Il type

|

b) oscillating discontinuity asf (X) = Sin;

at 0
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Find an example of a functiofi: R - R

e that Is continuous at exactly one
point;

e such thatf 2 is continuous buf is
discontinuous at each real number;

e that Is continuous at each rational
number and discontinuous at each
Irrational number.

29



Properties of continuous functions

Theorem 5. If fandg are real-valued functions both
continuous af, then functions

o kf (k—real constant)
o T+ g

° fg

. % (whereg(a) # 0)

are continuous &.

Proof: Apply the Heine definition and Th.6/Part 4.
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Theorem 6. If f Is continuous a&t andg Is continuous at
b = f(a),then g o f is continuous ata.

Proof:
lim f(x) = fla)=hb
yl‘% g(y) = gb) = g(f(a))

h(x) =(ge°f)x) =g (x))
fx)=y

lim h(x) = lim g(f (x)) = x> a=7y-b

= g(f (@) = h(a)

= lim g(y) = g(b) =
y—b
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The continuity of inverse function is not an eatter.
Theorem 7. The inverse of a strictly monotonic continuous

function 1s continuous In the interval where it I1s defined.

Show that Th. 7 gives sufficient but
not necessary condition for continuity
of inverse function.
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Theorem 8. Each basic elementary function is continuous.

Proof > AFCC

Note: elementary functions are ‘usually’ continuous.
Find an elementary function which is discontinuous
at some point.

Hint: keep a close watch on Th. 7.
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Theorem 9. If function f is continuous atz andf(a) > 0,
then there exists a nbd efsuch that for eack from this nbd
we havef (x) > 0, i.e.:

Cssop | X—alk 8= (%) >0.
Proof:
O,s0Css00xp]| X—alk 0= () - f(a) < €]

Oesodssodxpll X—alk 0= f(a)-e< f(X) < f(a)+¢]

e

positive positive

Let £< f(a)
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Theorem 10 (Intermediate Value Theorem). If function f

IS continuous ona, b), then f has the Darboux property on
(a,b). That is, ifd is any value betweefi(a) andf(b), then
there existg € (a,b) suchthatf(c) =d.

Note: discontinuous functions also may have théobDax property.

Theorem 11. If function f is continuous on{(a,b) and
fla)f(b) < 0, then there exists € (a,b) suchthatf(c) = 0.

Proof: Directly from Th.10. B
Note: explain the practical meaning of this thearem
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Theorem 12 (the Welerstrass Theorem). If function f is
continuous ona, b), then it takes on both global minimum
and global maximunvalues in the interval.

@ ho

Corollary 1. If function f is continuous ofa, b) then it
bounded.

Corollary 2. If function f is continuous ofa, b) then its
range is equal toim,M) where m and M are global
minimumand global maximum, respectively.

Find an example of a functiohsuch thaR # (m, M).
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Df. 1. Theoscillationof functionf is defined as the difference
between its global maximum and global minimum:

«&=M —-m

Df. 2. Thepartitionof (a, b) is defined as the set
Pn — {<x01 Xl), <x11 X2>, <x2' X3 >: ee ) (xn—ll xn>}
wherex,, x{, x5, ..., X, are arbitrarily chosen points such that
Aa=Xyg <X <Xy <:-+-<x,=bh.
Theorem 13. If function f is continuous ona, b), then there
exists the partition of{(a,b)such that the oscillation in each

subinterval is less than any arbitrarily chosen positive number, i.e.:
VesodnenVisisn Wi = M; —m; <e.
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Asymptotes

Df. 3. The curvey = f(x) hasvertical asymptotex = a
Iff . .

im f(x) =xc0 or [im f(x)=zco.

X—a X-a

Df. 4. The curvey = f(x) hashorizontal asymptotey = b
Iff
im f(xX)=b or Im f(x)=Nh.
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Df. 5. The curvey = f(x) hasslant asymptotey = ax + b
Iff
lim [f(x)-(ax+b)|=0 or lim [f(x)-(ax+b)]=0.
X — +00 X —» —00

Theorem 14. The liney = ax + b is the slant asymptote of
curvey = f(x) Iff

() (%)

a= |lim —= a= lim —=~
X400 X or < Xo—00 X
b= Iim[f(X)—ax] b= Iim[f(X)—ax].
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ISIT POSSIBLE THAT THE GRAPH OF A FUNCTION

* has infinitely many vertical asymptotes?
 has 3 different horizontal asymptotes?

 has simultaneously vertical, horizontal and slant
asymptotes?

* Intersects its asymptote?

* has vertical asymptote iD, = R?
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