PART 6 DERIVATIVES AND DIFFERENTIALS

Definition of derivative

Now we consider real-valued functions of one real variable.

Df. 1. The derivative of function *f* at a point *a* is defined as $f'(a) = \lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x}$

if the limit exists and is finite.

If f'(a) exists, then we say that f is differentiable at a. Notation:

1) if
$$y = f(x)$$
 is differentiable at a , then $f'(a) = \frac{dy}{dx}\Big|_a = \frac{df}{dx}\Big|_a$
2) $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

Tangent line – the limit position of secant lines.

Normal line – the line perpendicular to the tangent line at the point of tangency.

Tangent line:

$$y - f(a) = f'(a)(x - a)$$

Normal line:

$$y - f(a) = -\frac{1}{f'(a)}(x - a) \text{ if } f'(a) \neq 0$$

$$x = a \text{ if } f'(a) = 0$$

Suppose that f'(a) exists. Then

$$\lim_{x \to a} f(x) = \begin{bmatrix} x - a = \Delta x \\ x = a + \Delta x \\ x \to a \Rightarrow \Delta x \to 0 \end{bmatrix} = \lim_{\Delta x \to 0} f(a + \Delta x) =$$

$$= \lim_{\Delta x \to 0} \left[f(a + \Delta x) - f(a) + f(a) \right] =$$

$$= \lim_{\Delta x \to 0} \left[\frac{f(a + \Delta x) - f(a)}{\Delta x} + \frac{0}{\Delta x + f(a)} \right] = f(a)$$

$$f'(a) = f(a)$$

WHAT DOES IT MEAN?

Example: find the derivative of f(x) = |x| at 0.

$$f'(0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(\Delta x) - |0|}{\Delta x} = \lim_{\Delta x \to 0} \frac{|\Delta x|}{\Delta x} = ?$$

$$\lim_{\Delta x \to 0^+} \frac{|\Delta x|}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{\Delta x}{\Delta x} = \lim_{\Delta x \to 0^+} 1 = 1;$$

$$\lim_{\Delta x \to 0^-} \frac{|\Delta x|}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{\Delta x}{\Delta x} = \lim_{\Delta x \to 0^+} (-1) = -1.$$

Hence f'(0) does not exist.

0

Note: differentiable functions are also called smooth functions.

Continuity is necessary but not sufficient for differentiability.

Differentiability is sufficient but not necessary for continuity.

Df. 2. If for all $x \in D' \subset D$, the numer f'(x) exists, then we can build the new function

$$f': y = f'(x), \qquad x \in D'$$

called the derivative of f.

Note: f'(x) – a number f' – a function

Properties of differentiable functions

Theorem 1. If f and g are differentiable functions, and c is a real constant, then:

1)
$$(cf)' = cf'$$

2) $(f+g)' = f'+g'$
3) $(fg)' = f'g + fg'$
4) $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$ (if $g \neq 0$).

Theorem 2. If y = f(x) is strictly monotonic in an interval *I*, and there exists a point $a \in I$ such that $f'(a) \neq 0$, then the derivative of inverse function $x = f^{-1}(y)$ exists at the point f(a) and is equal to $\frac{1}{f'(a)}$.

In other words,
$$\frac{dx}{dy}\Big|_{y_0} = \frac{1}{\frac{dy}{dx}\Big|_{x_0}}$$
 or, equvalently, $\frac{dy}{dx}\Big|_{x_0} = \frac{1}{\frac{dx}{dy}\Big|_{y_0}}$
 $(x_0 = a, y_0 = f(a)).$

Theorem 3. (Chain Rule) If u = g(x) is differentiable at x_0 and y = f(u) is differentiable at $u_0 = f(x_0)$, then the composite function y = f(g(x)) is differentiable at x_0 and

$$(f \circ g)'(x_0) = f'(u_0)g'(x_0).$$

In other words, $\frac{dy}{dx}\Big|_{x_0} = \frac{dy}{du}\Big|_{u_0} \cdot \frac{du}{dx}\Big|_{x_0}.$

Table of derivatives

Derive each formula!

$$(c)' = 0 (\ln x)' = \frac{1}{x} (\ln x)' = \frac{1}{x} (\ln x)' = \frac{1}{x} (\log_a x)' = \frac{1}{x \ln a} (a > 0, a \neq 1) (\sin x)' = \cos x (\cos x)' = -\sin x (\tan x)' = \frac{1}{\cos^2 x} (\tan x)' = \frac{1}{\cos^2 x} (\tan x)' = \frac{1}{\sin^2 x} (\cos x)' = -\frac{1}{\sin^2 x} (\cos x)'$$

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$$
$$(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}}$$
$$(\arctan x)' = \frac{1}{1 + x^2}$$
$$(\arctan x)' = -\frac{1}{1 + x^2}$$
$$(\sinh x)' = \cosh x$$
$$(\cosh x)' = \sinh x$$
$$(\tanh x)' = \frac{1}{\cosh^2 x}$$
$$(\coth x)' = -\frac{1}{\sinh^2 x}$$

Differentials

Df. 3. If *f* is differentiable and $\Delta x \neq 0$ is an increment of independent variable, then the expression $dy = f'(x)\Delta x$ is called the differential of *f*.

Remark 1:

Remark 2:

$$dy: dx = \frac{dy}{dx} = \frac{y'\Delta x}{\Delta x} = \frac{y'}{\Delta x}$$

Theorem 4. If f is differentiable at x, then

$$\Delta y = f(x + \Delta x) - f(x) = dy + \mathcal{E}\Delta x$$
, where $\lim_{\Delta x \to 0} \mathcal{E} = 0$.

Geometrical interpretation of differential

Application of Th. 4:

if $\Delta x \approx 0$, then $\Delta y \approx dy$, i.e. $f(x + \Delta x) \approx f(x) + dy$.

Properties of differentials

Theorem 5. If u, v are differentiable, and c is a real constant, then

1)
$$d(cu) = cdu$$

2) $d(u+v) = du + dv$
3) $d(uv) = vdu + udv$
4) $d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}$ (if $v \neq 0$)
Proof AFCC

$$\begin{cases} x = x(t) \\ y = y(t), t \in I \end{cases}$$
$$t - \text{time} \Rightarrow \{ (x(t), y(t)) : t \in I \} - \text{a curve} \end{cases}$$

If x and y are differentiable, x' is different than 0, then the set above is the graph of some function y = f(x). Moreover,

$$f'(x) = \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{y'(t)}{x'(t)} \stackrel{notation}{=} \frac{\dot{x}}{\dot{y}}$$

Derivatives of higher orders

Df. 4.
$$f^{(n)} \stackrel{\text{df}}{=} \left(f^{(n-1)} \right)' \stackrel{\text{notation}}{=} \frac{d^n f}{dx^n}, \quad n \ge 2.$$

Example:

$$f(x) = e^{x}, f'(x) = e^{x}, f''(x) = e^{x}, f'''(x) = e^{x}, f'''(x) = e^{x}, f^{(4)}(x) = e^{x}, \dots,$$
$$f^{(n)}(x) = e^{x}, \dots$$

Example:

$$f(x) = \sin x, f'(x) = \cos x, f''(x) = -\sin x, f'''(x) = -\cos x,$$

$$f^{(4)}(x) = \sin x, \dots$$

Hence
$$f^{(n)}(x) = \sin\left(x + \frac{n\pi}{2}\right), n \in \mathbb{N}.$$

0

Differentials of higher orders

 $\Delta x = dx \neq 0 \text{ constant}$ dy = y' dx - a function of x

$$d^{2}y \stackrel{\text{df}}{=} d(dy) = d(y'dx) = (y'dx)'dx =$$

$$= y'' dx dx = y'' (dx)^2 \stackrel{\text{notation}}{=} y'' dx^2$$

$$d^{3}y \stackrel{\text{df}}{=} d(d^{2}y) = d(y''dx^{2}) = (y''dx^{2})'dx =$$

= $y'''dx^{2}dx = y'''(dx)^{3} \stackrel{\text{notation}}{=} y'''dx^{3}$, etc.

Remark:

$$dx^{n} = (dx)^{n} = dx \cdot dx \cdot \dots \cdot dx$$
$$d(x^{n}) = nx^{n-1}dx$$
$$d^{n}x = d(d^{n-1}x) = \begin{cases} dx & \text{if } n = 1\\ 0 & \text{if } n \ge 2 \end{cases}$$