
PART 6
DERIVATIVES AND DIFFERENTIALS



Definition of derivative

Now we consider real-valued functions of one real variable.

Df. 1. The derivative of function� at a point � is defined as

�� � = lim
∆	→�

� � + ∆
 − �(�)
∆


if the limit exists and is finite.

If �	’(�) exists, then we say that  �	 is differentiable at �.
Notation: 

1) if � = �(
) is differentiable at�, then�	’ � = ��
�	�� =

��
�	��

2) �� � = lim
�→�

� ��� ��(�)
� = lim

	→�
� 	 ��(�)

	��
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Tangent line – the limit position of secant lines.
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Normal line– the line perpendicular to the tangent line 
at the point of tangency.

Tangent line:
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WHAT DOES IT MEAN?
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Example: find the derivative of  �(
) 	= 	 |
| at 0.
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All functions 
defined at a

All functions 
continuous at a

All functions 
discontinuous at a

All functions 
differentiable at a

xy =

|| xy =

xy sgn=

Note: differentiable functions are also called smoothfunctions.
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Continuity is necessary but not sufficient for
differentiability.

Differentiability is sufficient but not necessary for
continuity.

Df. 2. If for all 
 ∈  � ⊂  ,	 the numer�′(
) exists, then we
can build the newfunction

��: � = �� 
 , 
 ∈  �
called thederivativeof �.

Note: �’(
)	– a number

�’	– a function
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Properties of differentiable functions

Theorem 1. If  � and % are differentiable functions, and & is 
a real constant, then:
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Proof AFCC
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Theorem 2. If �	 = 	�	(
)	is strictly monotonic in an interval',
and there exists a point� ∈ ' such that�� � ≠ 0, then the
derivative of inverse function
	 = 	��)(�) exists at the point

�(�) and is equal to
)

�* � .

In other words,
�	
����+

= )
,-
,.�.+

or, equvalently, 
��
�	�	+

= )
,.
,-�-+

(
� = �, �� = �(�)).

Theorem 3. (Chain Rule) If / = %(
) is differentiable at
� and
� = �(/) is differentiable at/� = � 
� , then the composite
function� = �(% 
 ) is differentiable at
� and

� ∘ % �(
�) = �� /� %� 
� .

In other words,
��
�	�	+

= ��
�1�1+

⋅ �1�	�	+
.

10



Table of derivatives
Derive each formula!
& � = 0		

 � = 1		
�
 + 4 � = �	
1



�
= − 1


5		


 � = 1
2 
			


7 � = 8
7�), 8 ∈ ℝ			
:	 � = :		
�	 � = �	 ln � 		(� > 0)	

ln 
 � = 1
			

log� 
 � = 1

 ln �		 � > 0, � ≠ 1 	

sin 
 � = cos 
		
cos 
 � = −sin 
	

tan 
 � = 1
cos5


cot 
 � = − 1
sin5
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arcsin 
 � = 1
1 − 
5

				

arccos 
 � = − 1
1 − 
5

		

arctan 
 � = 1
1 + 
5			

arccot 
 � = − 1
1 + 
5

sinh 
 � = cosh 
		
cosh 
 � = sinh 
	

tanh 
 � = 1
cosh5


coth 
 � = − 1
sinh5
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Differentials

Df. 3. If �	is differentiable and                is an increment 
of independent variable, then the expression                       
is called the differentialof f.
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Theorem 4. If  � is differentiable at  
, then
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Geometrical interpretation of differential
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Application of Th. 4:

i.e.,then,0if dyyx ≈∆≈∆

.)()( dyxfxxf +≈∆+

approximate calculations
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Properties of differentials

Theorem 5. If  /, E are differentiable, and  & is a real 
constant, then
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Proof AFCC
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Derivative of function given by 
parametric equations
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Derivatives of higher orders

Df. 4. ( ) .2,
' notation
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Differentials of higher orders
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