
PART 8

APPLICATIONS OF DERIVATIVES(2)



Concavity

Df. 3. A function f continuous on intervalI (open or closed,
bounded or unbounded) is calledconcave up(or concave
upward) on I iff
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Df. 4. A function f continuous on intervalI (open or closed,
bounded or unbounded) is calledconcave down(or concave
downward) on I iff
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Note:if �	 is CU, then �	 = 	−	�		is CD.
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f is CU
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Suppose that  f is CU and twice differentiable on 
interval  I.
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Df. 5. If function � is CU (or CD) on interval �, then its graph
is calledconcave up(or concave down) .

Df. 6. If �	 is continuous at�, and �	 is
• CU on (�	– 	
, �) and CDon (�, � + 
)
or
•CD on (�	– 
, �)		and CUon (�, � + 
), where
 > 0

thena is calledinflection numberof �.

Df. 7. If � is the inflection number of function�, then the point
�(�, �	(�))	is called theinflection pointof curve�	 = 	�	(�).

Theorem 9. If � is the inflection number of�, then�’’(�) = 0	or
�’’(�)	does not exist.

Theorem 10. If �’’(�) = 0 and the second derivative changes its 
sign passing through  �, then  � is the inflection number of  �. 
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De l’Hospital’s Rules

Theorem 11 (de l’Hospital’s Rule). Let functions  f, g
satisfy the following conditions: 
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Proof:

Let us consider functions  F and  G defined as:
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We can apply the Cauchy Theorem to  F and  G
on interval  :),(  where,, baxxa ∈

verify 
assumptions!
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Remarks:

• we can state and prove analogously theorem for limits 
from the left or at infinity;

• Th. 11 holds for indeterminate form          as well as 

(the proof for last case is not so easy);
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• to apply de l’Hospital’s Rules we have to be sure that 
the limit of quotient of derivatives exists.
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Indeterminate forms
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Curve sketching

1. Domain;x-intercept,y-intercepts; is the function even,
odd, periodic?

2. Limits at the endpoints of domain; asymptotes.

3. Analysis of the first derivative (monotonicity, extreme
values).

4. Analysis of the second derivative (concavity,
inflections).

5. Collection of all informations in the table.

6. Sketching the curve.
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