PART 8 APPLICATIONS OF DERIVATIVES (2)

Concavity

Df. 3. A function f continuous on interval I (open or closed, bounded or unbounded) is called concave up (or concave upward) on I iff

$$\forall_{\substack{x_1,x_2 \in I \\ x_1 \neq x_2}} \forall_{\lambda \in (0,1)} f(\lambda x_1 + (1-\lambda)x_2) < \lambda f(x_1) + (1-\lambda)f(x_2).$$

Df. 4. A function f continuous on interval I (open or closed, bounded or unbounded) is called concave down (or concave downward) on I iff

$$\forall_{\substack{x_1,x_2 \in I \\ x_1 \neq x_2}} \forall_{\lambda \in (0,1)} f(\lambda x_1 + (1-\lambda)x_2) > \lambda f(x_1) + (1-\lambda)f(x_2).$$

Note: if f is CU, then g = -f is CD.

Suppose that f is CU and twice differentiable on interval I.

 $[f \text{ is CU and } f'' \text{ exists on } I] \Rightarrow f' \text{ is incr. on } I \Rightarrow$ $\Rightarrow \forall_{x \in I} f''(x) \ge 0.$

$$\left[\forall_{x \in I} \ f''(x) > 0 \right] \Rightarrow f \text{ is CU on } I.$$

4

WHY?

Df. 5. If function f is CU (or CD) on interval I, then its graph is called concave up (or concave down).

Df. 6. If f is continuous at a, and f is • CU on $(a - \delta, a)$ and CD on $(a, a + \delta)$

or

•CD on $(a - \delta, a)$ and CU on $(a, a + \delta)$, where $\delta > 0$ then *a* is called inflection number of *f*.

Df. 7. If a is the inflection number of function f, then the point P(a, f(a)) is called the inflection point of curve y = f(x).

Theorem 9. If a is the inflection number of f, then f''(a) = 0 or f''(a) does not exist.

Theorem 10. If f''(a) = 0 and the second derivative changes its sign passing through *a*, then *a* is the inflection number of *f*.

De l'Hospital's Rules

Theorem 11 (de l'Hospital's Rule). Let functions *f*, *g* satisfy the following conditions:

1) f, g are continuous on (a, b)

- 2) f, g are differentiable on (a, b)
- 3) $g(x) \neq 0$ and $g'(x) \neq 0$ for all x from some nbd of a

4)
$$\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{+}} g(x) = 0$$

5)
$$\lim_{x \to a^{+}} \frac{f'(x)}{g'(x)} \text{ exists (proper or improper).}$$

Then
$$\lim_{x \to a^{+}} \frac{f(x)}{g(x)} = \lim_{x \to a^{+}} \frac{f'(x)}{g'(x)}.$$

Proof:

Let us consider functions F and G defined as:

$$F(x) = \begin{cases} f(x) & \text{if } x \in (a,b) \\ 0 & \text{if } x = a \end{cases} \quad G(x) = \begin{cases} g(x) & \text{if } x \in (a,b) \\ 0 & \text{if } x = a \end{cases}$$

We can apply the Cauchy Theorem to
$$F$$
 and G
on interval $\langle a, x \rangle$, where $x \in (a,b)$:
$$\frac{f(x)}{g(x)} = \frac{f(x) - 0}{g(x) - 0} = \frac{F(x) - F(a)}{G(x) - G(a)} = \frac{F'(c)}{G'(c)} = \frac{f'(c)}{g'(c)}$$
$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{(x \to a^+)} \frac{f'(c)}{g'(c)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}.$$

Remarks:

• we can state and prove analogously theorem for limits from the left or at infinity;

• Th. 11 holds for indeterminate form $\begin{bmatrix} 0\\ 0 \end{bmatrix}$ as well as $\begin{bmatrix} \infty\\ \infty \end{bmatrix}$ (the proof for last case is not so easy);

• to apply de l'Hospital's Rules we have to be sure that the limit of quotient of derivatives exists.

Indeterminate forms

Curve sketching

- 1. Domain; *x*-intercept, *y*-intercepts; is the function even, odd, periodic?
- 2. Limits at the endpoints of domain; asymptotes.
- 3. Analysis of the first derivative (monotonicity, extreme values).
- 4. Analysis of the second derivative (concavity, inflections).
- 5. Collection of all informations in the table.
- 6. Sketching the curve.