PART 8APPLICATIONS OF DERIVATIVES (2)

Concavity

Df. 3. A function *f* continuous on interval *^I* (open or closed, bounded or unbounded) is called concave up (or concave upward) on *^I* iff

$$
\forall_{\substack{x_1, x_2 \in I \\ x_1 \neq x_2}} \forall_{\lambda \in (0,1)} \ f(\lambda x_1 + (1 - \lambda) x_2) < \lambda f(x_1) + (1 - \lambda) f(x_2).
$$

Df. 4. A function *f* continuous on interval *^I* (open or closed, bounded or unbounded) is called concave down (or concave downward) on *^I* iff

$$
\forall_{\substack{x_1, x_2 \in I \\ x_1 \neq x_2}} \forall_{\lambda \in (0,1)} f(\lambda x_1 + (1 - \lambda) x_2) > \lambda f(x_1) + (1 - \lambda) f(x_2).
$$

Note: if f is CU, then $g = -f$ is CD.

Suppose that *f* is CU and twice differentiable on interval *I*.

 $\Rightarrow \forall_{x \in I} f''(x) \geq 0.$ $[f$ is CU and f'' exists on $I \Rightarrow f'$ is incr. on $I \Rightarrow$ ∈ ϵ ^{*f*}^{''}(x *x*∈ *I*

$$
[\forall_{x \in I} f''(x) > 0] \Rightarrow f \text{ is CU on } I.
$$

WHY?

Df. 5. If function f is CU (or CD) on interval I , then its graph is called concave up (or concave down) .

Df. 6. If f is continuous at a , and f is

• CU on $(a - \delta, a)$ and CD on $(a, a + \delta)$

or

•CD on $(a - \delta, a)$ and CU on $(a, a + \delta)$, where $\delta > 0$ then a is called inflection number of f .

Df. 7. If α is the inflection number of function f , then the point $P(a, f(a))$ is called the inflection point of curve $y = f(x)$.

Theorem 9. If a is the inflection number of f, then $f''(a) = 0$ or $f''(a)$ decay not wist $f''(a)$ does not exist.

Theorem 10. If $f''(a) = 0$ and the second derivative changes its sign passing through a , then a is the inflection number of f .

De l'Hospital's Rules

Theorem 11 (de l'Hospital's Rule). Let functions *f*, *g*satisfy the following conditions:

- 1) f , g are continuous on (a,b)
- 2) f, g are differentiable on (a,b)
- 3) $g(x) \neq 0$ and $g'(x) \neq 0$ for all x from some nbd of *a*

4)
$$
\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{+}} g(x) = 0
$$

5)
$$
\lim_{x \to a^{+}} \frac{f'(x)}{g'(x)}
$$
 exists (proper or improper).
Then
$$
\lim_{x \to a^{+}} \frac{f(x)}{g(x)} = \lim_{x \to a^{+}} \frac{f'(x)}{g'(x)}.
$$

Proof:

Let us consider functions *F* and *^G* defined as:

$$
F(x) = \begin{cases} f(x) & \text{if } x \in (a,b) \\ 0 & \text{if } x = a \end{cases} \quad G(x) = \begin{cases} g(x) & \text{if } x \in (a,b) \\ 0 & \text{if } x = a \end{cases}
$$

We can apply the Cauchy Theorem to *F* and *G*
\non interval
$$
\langle a, x \rangle
$$
, where $x \in (a, b)$:
\n
$$
\frac{f(x)}{g(x)} = \frac{f(x) - 0}{g(x) - 0} = \frac{F(x) - F(a)}{G(x) - G(a)} = \frac{F'(c)}{G'(c)} = \frac{f'(c)}{g'(c)}
$$
\n
$$
\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{(x \to a^+)} \frac{f'(c)}{g'(c)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}.
$$

Remarks:

• we can state and prove analogously theorem for limits from the left or at infinity;

• Th. 11 holds for indeterminate form $\left|\frac{0}{0}\right|$ as well as (the proof for last case is not so easy); $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ as well as $\begin{bmatrix} \infty \\ \infty \end{bmatrix}$

• to apply de l'Hospital's Rules we have to be sure that the limit of quotient of derivatives exists.

Indeterminate forms

Curve sketching

- 1. Domain;*x*-intercept,*^y*-intercepts; is the function even, odd, periodic?
- 2. Limits at the endpoints of domain; asymptotes.
- 3. Analysis of the first derivative (monotonicity, extremevalues).
- 4. Analysis of the second derivative (concavity, inflections).
- 5. Collection of all informations in the table.
- 6. Sketching the curve.