sum

Test in Calculus — Macrocourse sem. II — version B0

- **1.** Function g is continuous on (0,10) and $f(x) = \int_{-\infty}^{8} g(t) dt$. If f(0) = 1 and f(5) = -12, then $\int_{0}^{5} g(t) dt = \dots$
- **2.** Function g is even and integrable over $\langle -10, 10 \rangle$. If $\int_{-6}^{6} g(t) dt = -4$, then $\int_{-6}^{6} g(t) dt = \dots$
- **3.** Function f is odd and continuous on **R**. If $\int_{0}^{5} f(x)dx = 12$, then $\int_{0}^{5} f(x)dx = \dots$
- **4.** Function f is odd and continuous on **R**. If $\int_{0}^{3} f(x)dx = 10$ and $\int_{0}^{8} f(x)dx = -3$, then $\int_{0}^{5} f(x)dx = \dots$
- 5. The mean value of function $f(x) = \sin x$ (calculated from the Mean-Value Theorem for definite integral) is negative in intervals:
 - **A.** $\langle 0, \pi \rangle$
- **B.** $\langle -\frac{\pi}{2}, \frac{\pi}{6} \rangle$
- C. $\langle 0, \frac{3\pi}{2} \rangle$
- **6.** Let $f(x,y) = \int_{x}^{y} \frac{\sin \sqrt{t}}{t-2} dt$. Then $\frac{\partial f}{\partial x} = \dots$ and $\frac{\partial f}{\partial y} = \dots$

for (x, y) such that

- 7. Improper integrals are
 - **A.** $\int_{1}^{+\infty} \arccos \frac{1}{x} dx$
- C. $\int_0^1 \frac{dx}{\arccos x}$
- **E.** $\int_{-\infty}^{1} \arctan x$

- $\mathbf{B.} \int_{-1}^{0} \frac{dx}{\arccos x}$
- **D.** $\int_{0}^{+\infty} \arccos(4x^2-1) dx$ **F.** $\int_{0}^{+\infty} \sqrt{\operatorname{arccot}(x-1)} dx$
- 8. Initial conditions for the equation $2y'' 3y' + \ln(y 2) = \arcsin 2x$ may be, for example, following:

.....

- **9.** A particular solution of $y'' y' = x^2 + x$ is of the form
- 10. A particular solution of $y''-2y'+17y=e^{-x}\sin 2x$ is of the form
- 11. A particular solution of $y'' 2y' + y = e^x$ is of the form
- **12.** $\mathcal{L}[(3+2e^{-t}+t\sin\frac{t}{3})\mathbf{1}(t)] = \dots$
- **13.** $\mathcal{L}^{-1}\left[\frac{5}{s^4} + \frac{2s+1}{(s-3)^2+5}\right] = \dots$
- **14.** Complete (functions y_1, y_2, \ldots, y_n are from C^{n-1} -class):
 - **A.** If $W(y_1, y_2, ..., y_n) = 0$, then $y_1, y_2, ..., y_n$ are linearly
 - **B.** If $W(y_1, y_2, ..., y_n) \neq 0$, then $y_1, y_2, ..., y_n$ are linearly
 - C. If y_1, y_2, \ldots, y_n are linearly independent, then $W(y_1, y_2, \ldots, y_n)$
 - **D.** If y_1, y_2, \ldots, y_n are linearly dependent, then $W(y_1, y_2, \ldots, y_n)$
- **15.** The partial derivative of u = f(x, y, z) with respect to z at $P(x_0, y_0, z_0) \in D_f$ is defined as

	iff the increment of function $\Delta z=$
	may be written in the form: $\Delta z =$
	where
7.	Directional derivative of $z = 3x^2 - 2y^3$ at $P(1,0)$ in the direction of $\mathbf{u} = [-5,2]$ equals
8.	Tangent plane to $x^2y - 3y^2z + z^2x = 5x$ at $P(1, 1, -1)$ has equation
9.	Let $u = \frac{x}{y} + \cos z$ and $P(2, \frac{1}{3}, \pi)$. Then grad $u _P$ equals
0.	Mark each of the following sentences T (if it is true) or F (if it is false). All sentences concern real–valued functions of two real variables.
	1) Continuity is necessary for differentiability.
	2) Differentiability is necessary for continuity.
	3) If a function has both partial derivatives, then it is continuous.
	4) If a function has both partial derivatives, then it is differentiable.
	5) All functions from C^1 -class are differentiable.
	7) If a function is differentiable, then its partials are continuous.
	If $u = f(x, y, z)$ and $f \in C^3$, then A. $\frac{\partial^4 u}{\partial x^2 \partial z^2} = \frac{\partial^4 u}{\partial z^2 \partial x^2}$ C. $\frac{\partial^3 u}{\partial x^2 \partial y} = \frac{\partial^3 u}{\partial x \partial y \partial x}$ E. $\frac{\partial^3 u}{\partial x^2 \partial y} = \frac{\partial^3 u}{\partial y \partial x^2}$ B. $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial z}$ D. $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$ F. $\frac{\partial^3 u}{\partial x^2 \partial y} = \frac{\partial^3 u}{\partial x \partial y^2}$
2.	A function f is continuous on $D = \{(x, y): -1 \le x \le 0 \land x + 1 \le y \le 1 - x^2\}$. Then:
	$\iint_D f(x,y) \ dxdy = \int_{\dots}^{\dots} \left[\int_{\dots}^{\dots} f(x,y) \ dy \right] dx = \int_{\dots}^{\dots} \left[\int_{\dots}^{\dots} f(x,y) \ dx \right] dy$
3.	A function f is continuous on $D = \{(x, y) : x^2 + y^2 \le 5 \land y \ge x\}$. Then:
	$\iint_D f(x,y) \ dxdy = \int_{\dots}^{\dots} \left[\int_{\dots}^{\dots} dr \right] d\varphi$
4.	Complete the definition of double integral:
	If $f: D \to \mathbf{R}$ (where $D \subset \mathbf{R}^2$ is
	$\iint_D f(x,y) \ dxdy = \dots$
	iff for all always exists and always has the same independently of
	In this definition:
	ΔD_i is,
	$(\xi_i, \eta_i) \in \dots, i = \dots$ are