Report

Group: MK2
Section: 6

Aleksandra Szpiech
Patryk Piwowarczyk
Wojciech Bieniek

Ex. 2

Transient in the first order circuits with zero initial conditions switched on a DC source.

Tutor Name: dr hab. inż. Damian Grzechca

Board Number: 6

Circuit examined

Capacitors

  1. C1=749nFC_{1} = 749nF

    • Radd3=920ΩR_{add3} = 920Ω
      CH I: 5Vdiv5 {V \over div}
      CH II: 0.2Vdiv0.2 {V \over div}
      Time: 1msdiv1 {ms \over div}
      m-c1-920
    • Radd2=620ΩR_{add2} = 620Ω
      CH I: 5Vdiv5 {V \over div}
      CH II: 0.2Vdiv0.2 {V \over div}
      Time: 1msdiv1 {ms \over div}
      m-c1-620
    • Radd1=220ΩR_{add1} = 220Ω
      CH I: 5Vdiv5 {V \over div}
      CH II: 0.2Vdiv0.2 {V \over div}
      Time: 1msdiv1 {ms \over div}
      m-c1-220
  2. C2=149nFC_{2} = 149nF

    • Radd3=920ΩR_{add3} = 920Ω
      CH I: 5Vdiv5 {V \over div}
      CH II: 0.2Vdiv0.2 {V \over div}
      Time: 1msdiv1 {ms \over div}
      m-c2-920
    • Radd2=620ΩR_{add2} = 620Ω
      CH I: 5Vdiv5 {V \over div}
      CH II: 0.2Vdiv0.2 {V \over div}
      Time: 1msdiv1 {ms \over div}
      m-c2-620
    • Radd1=220ΩR_{add1} = 220Ω
      CH I: 5Vdiv5 {V \over div}
      CH II: 0.2Vdiv0.2 {V \over div}
      Time: 1msdiv1 {ms \over div}
      m-c2-220
  3. C1C2=898nFC_{1} || C_{2} = 898nF

    • Radd3=920ΩR_{add3} = 920Ω
      CH I: 5Vdiv5 {V \over div}
      CH II: 10mVdiv10 {mV \over div}
      Time: 1msdiv1 {ms \over div}
      m-cp-920
    • Radd2=620ΩR_{add2} = 620Ω
      CH I: 5Vdiv5 {V \over div}
      CH II: 10mVdiv10 {mV \over div}
      Time: 1msdiv1 {ms \over div}
      m-cp-620
    • Radd1=220ΩR_{add1} = 220Ω
      CH I: 5Vdiv5 {V \over div}
      CH II: 20mVdiv20 {mV \over div}
      Time: 1msdiv1 {ms \over div}
      m-cp-220

Coils

  1. L1=130mHL_{1} = 130mH

    • Radd3=920ΩR_{add3} = 920Ω
      CH I: 10Vdiv10 {V \over div}
      CH II: 0.1Vdiv0.1 {V \over div}
      Time: 1msdiv1 {ms \over div}
      m-l1-920
    • Radd2=620ΩR_{add2} = 620Ω
      CH I: 10Vdiv10 {V \over div}
      CH II: 0.1Vdiv0.1 {V \over div}
      Time: 1msdiv1 {ms \over div}
      m-l1-920
    • Radd1=220ΩR_{add1} = 220Ω
      CH I: 10Vdiv10 {V \over div}
      CH II: 0.1Vdiv0.1 {V \over div}
      Time: 1msdiv1 {ms \over div}
      m-l1-920
  2. L2=34mHL_{2} = 34mH

    • Radd3=920ΩR_{add3} = 920Ω
      CH I: 10Vdiv10 {V \over div}
      CH II: 0.1Vdiv0.1 {V \over div}
      Time: 1msdiv1 {ms \over div}
      m-l2-920
    • Radd2=620ΩR_{add2} = 620Ω
      CH I: 10Vdiv10 {V \over div}
      CH II: 0.1Vdiv0.1 {V \over div}
      Time: 1msdiv1 {ms \over div}
      m-l2-920
    • Radd1=220ΩR_{add1} = 220Ω
      CH I: 10Vdiv10 {V \over div}
      CH II: 0.1Vdiv0.1 {V \over div}
      Time: 1msdiv1 {ms \over div}
      m-l2-920

Plots

Here, the time constant values were calculated with formula τ=RC\tau = { R * C }.

  1. C1=749nFC_{1} = 749nF

  2. C2=149nFC_{2} = 149nF

  3. C1C2=898nFC_{1} || C_{2} = 898nF

Data table

Capacitance C1=749nFC_1 = 749nF C2=149nFC_2 = 149nF C1C2=898nFC_1 \| C_2 = 898nF
Resistance Radd1=220ΩR_{add1} = 220 \Omega Radd2=620ΩR_{add2} = 620 \Omega Radd3=920ΩR_{add3} = 920 \Omega
Radd1R_{add1} Radd2R_{add2} Radd3R_{add3} Radd1R_{add1} Radd2R_{add2} Radd3R_{add3} Radd1R_{add1} Radd2R_{add2} Radd3R_{add3}
U(0)[V]U (0-) [V] 0 0 0 0 0 0 0 0 0
U(0+)[V]U (0+) [V] 0 0 0 0 0 0 0 0 0
U()[V]U (\infty) [V] 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2
T[μs]T [μs] 164 464 689 32 92 137 197 556 826
I(0)[mA]I (0-) [mA] 0 0 0 0 0 0 0 0 0
I(0+)[mA]I (0+) [mA] 15 6 4 15 6 4 15 6 4
I()[mA]I (\infty) [mA] 0 0 0 0 0 0 0 0 0
Inductance L1=130mHL_1 = 130mH L2=34mHL_2 = 34mH
Resistance Radd1=220ΩR_{add1} = 220 \Omega Radd2=620ΩR_{add2} = 620 \Omega Radd3=920ΩR_{add3} = 920 \Omega
Radd1R_{add1} Radd2R_{add2} Radd3R_{add3} Radd1R_{add1} Radd2R_{add2} Radd3R_{add3}
U(0)[V]U (0-) [V] 0 0 0 0 0 0
U(0+)[V]U (0+) [V] 0 0 0 0 0 0
U()[V]U (\infty) [V] 4.4 3 2 3 2 1
T[μs]T [μs] 590.9 209.6 141.3 154.5 54.8 36.9
I(0)[mA]I (0-) [mA] 0 0 0 0 0 0
I(0+)[mA]I (0+) [mA] 0 0 0 0 0 0
I()[mA]I (\infty) [mA] 21.66 11.66 8.33 28.33 15 10

Influence of R, C and L on τ

Increasing resistance prolongs the time constant for capacitors. It is so, because the capacitor charges with lesser current.
However, it’s increase shortens the time constant for inductors. The reason is, that the greater Thevenin resistance consumes energy stored in the coil faster.

Increasing capacitance prolongs the time constant for capacitors, as the capacitor accepts more charge.

Increasing inductance prolongs the time constant for coils, because they can store more energy.

Internal coils resistance

i()=iRd()=uRd()Rd=50[mV]/12Ω=4.17[mA]i( \infty ) = i_{R_d}( \infty ) = {u_{R_d}( \infty ) \over R_d } = 50 [mV] / 12 \Omega = 4.17 [mA]

RL1=uL1i=uL1()i()=0.9[V]4.17[mA]=215.8[Ω]R_{L_1} = {u_{L_1} \over i} = {u_{L_1}( \infty ) \over i( \infty )} = {0.9 [V] \over 4.17 [mA]} = 215.8 [\Omega]

RL2=uL2i=uL2()i()=0.44[V]4.17[mA]=105.5[Ω]R_{L_2} = {u_{L_2} \over i} = {u_{L_2}( \infty ) \over i( \infty )} = {0.44 [V] \over 4.17 [mA]} = 105.5 [\Omega]

Summary

We have observed the basic properties of RC and RL circuits. The relations between the 3 variable parameters: resistance, capacitance, inductance and the time constant are clearly visible on the measurements. Conducting a 3rd party simulation has proven that our plots are indeed of correct shape, albeit of different amplitudes and frequencies. The relations however remained, therefore we have confirmed the time constant equations τ=RCτ = RC and τ=LRτ = {L \over R}.

Conducting laboratories in distant learning form has proven to be much better solution for writing the report. We could prepare it the same time as conducting the measurements, which allowed us to avoid mistakes with notation, as well as loosing data. Repeating the same work on paper after a week, on the other hand, was not a very pleasant experience.