Report

Group: 2
Section: 9

Wojciech Bieniek
Patryk Piwowarczyk
Aleksandra Szpiech

Ex. 3

Tutor name: Damian Grzechca

C1 L2

fIN=186Hzf_{IN} = 186Hz
Tresp=1.04msT_{resp} = 1.04ms
Measurement of oscillation period
Measurement of oscillation period

Critical response Rcrit=150ΩR_{crit} = 150 \Omega
Finding critical response

Observed voltage characteristic
Observerd voltage plot
Observed currnet characteristic
Observerd current plot

C2 L2

fIN=186Hzf_{IN} = 186Hz
Tresp=0.46msT_{resp} = 0.46ms
Measurement of oscillation period
Measurement of oscillation period

Critical response Rcrit=470ΩR_{crit} = 470\Omega
Finding critical response

Observed voltage characteristic
Observerd voltage plot
Observed currnet characteristic
Observerd current plot

C1C2 L2

fIN=186Hzf_{IN} = 186Hz
Tresp=1.16msT_{resp} = 1.16ms
Measurement of oscillation period

Critical response Rcrit=130ΩR_{crit} = 130 \Omega
Finding critical response

Observed voltage characteristic
Observerd voltage plot
Observed currnet characteristic
Observerd current plot

C2 L1

fIN=186Hzf_{IN} = 186Hz
Tresp=0.9msT_{resp} = 0.9ms
Measurement of oscillation period

Critical response Rcrit=980ΩR_{crit} = 980 \Omega
Finding critical response

Observed voltage characteristic
Observerd voltage plot
Observed currnet characteristic
Observerd current plot

Data

C1=749nFC1 = 749nF
C2=149nFC2 = 149nF
C1C2=898nFC1 \| C2 = 898nF
L1=130mHL1 = 130mH
L2=34mHL2 = 34mH

RL1=200ΩR_{L1} = 200\Omega
RL2=90ΩR_{L2} = 90\Omega
Rp=12ΩR_p = 12\Omega
Rd=4kΩR_d = 4k\Omega

UA=5.163VU_A = 5.163V

Configuration C1 L2 C2 L2 C1C2 L2 C2 L1
x Exp. Calc. Exp. Calc. Exp. Calc. Exp. Calc.
Time period of osc. R0R_0 1.04ms1.04ms - 0.46ms0.46ms - 1.16ms1.16ms - 0.9ms0.9ms -
Freq. of osc. R0R_0 961.5Hz961.5Hz 997.3Hz997.3Hz 2173Hz2173Hz 2236Hz2236Hz 862.1Hz862.1Hz 910.8Hz910.8Hz 1111Hz1111Hz 1143Hz1143Hz
δ\delta - 2.09-2.09 - 0.4382-0.4382 - 2.647-2.647 - 1.663-1.663
RcritR_{crit} 150Ω150\Omega 339.337Ω339.337\Omega 470Ω470\Omega 897.346Ω897.346\Omega 130Ω130\Omega 391.826Ω391.826\Omega 980Ω980\Omega 192.966Ω192.966\Omega
i(0+)i(0+) for R0R_0 2mA2mA 1.084mA1.084mA 0.833mA0.833mA 1.084mA1.084mA 2.5mA2.5mA 1.084mA1.084mA 2.5mA2.5mA 1.084mA1.084mA
u(0+)u(0+) for R0R_0 0V0V 0V0V 0V0V 0V0V 0V0V 0V0V 0V0V 0V0V
i()i(\infty) for R0R_0 2mA2mA 1.063mA1.063mA 1.66mA1.66mA 1.063mA1.063mA 2.5mA2.5mA 1.063mA1.063mA 2.5mA2.5mA 1.039mA1.039mA
u()u(\infty) for R0R_0 200mV200mV 95.7mV95.7mV 200mV200mV 95.7mV95.7mV 200mV200mV 95.7mV95.7mV 400mV400mV 207.8mV207.8mV
i(0+)i(0+) for RcritR_{crit} 1mA1mA 1.06mA1.06mA 2.083mA2.083mA 1.031mA1.031mA 2.5mA2.5mA 1.062mA1.062mA 1.66mA1.66mA 0.9844mA0.9844mA
u(0+)u(0+) for RcritR_{crit} 800mV800mV 112.9mV112.9mV 1000mV1000mV 289.8mV289.8mV 700mV700mV 103.3mV103.3mV 1800mV1800mV 459.8mV459.8mV
i()i(\infty) for RcritR_{crit} 1.833mA1.833mA 1.063mA1.063mA 1.833mA1.833mA 1.063mA1.063mA 1.833mA1.833mA 1.063mA1.063mA 2.083mA2.083mA 1.039mA1.039mA
u()u(\infty) for RcritR_{crit} 200mV200mV 95.7mV95.7mV 200mV200mV 95.7mV95.7mV 200mV200mV 95.7mV95.7mV 200mV200mV 207.8mV207.8mV

Conclusions

If capacitance is growing, then the frequency is getting lower and so is RcritR_{crit}.

If inductance is growing, then the frequency is dropping and so is RcritR_{crit}.

Great difference between our observed and calculated values comes from low precision of setting the amplitude as well as invalid initial description of ‘critical damping’. From the laboratory instruction we gathered that it occurs when voltage passes the u()u(\infty) line only once, however from calculations it appears that said line shouldn’t be crossed when searching for RcritR_{crit}.