Introduction to Electrical and Electronic Circuits LAB. 6

Transmission line

Problems:

- 1. When a circuit has to be regarded as a circuit with distributed parameters i.e. as a transmission line?
- 2. When the transmission line is called:
 - a loosless line
 - a distortionless line

(Explain the differences between voltage and current waveforms in these lines)

- 3. How can:
 - characteristic impedance Z
 - propagation velocity v
 - attenuation constant
 - be experimentally measured?
- 4. When the line is matched at the input and at the output?
- 5. Assume a loosless transmission line as shown in fig. 1. Draw u(t,0), i(t,0), u(t,1/2), i(t,1/2), u(t,1), i(t,1), u(t_0/2, x), i(t_0/2, x), u(3t_0/2, x), u(3t_0/2, x), u(5t_0/2, x), i(5t_0/2, x) where t_0=1/v for every combination of the generator waveform e(t), generator impedance Z₁ and load impedance Z₂ from the following:
 - e(t)
 - 1. constant source E switched on at t=0; e(t)=E1(t)
 - 2. a rectangular pulse of width $t_{o}\!/4,\,t_{o}\!/2,\,t_{o},\,3t_{o}\!/2,\,2t_{o}$
 - 3. a symmetrical triangle of width $t_o/4$, $t_o/2$, t_o , $3t_o/2$, $2t_o$
 - Z₁=0; Z/5; Z; 4Z
 - Z₂=0 (short circuit); Z/5; Z (load match); 4Z; open circuit; a capacitor C; an inductor L; a serial/parallel connection of a capacitor/inductor and a resistor R=Z.

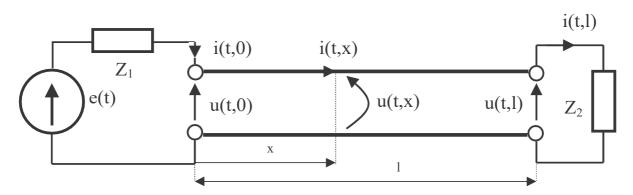


Fig. 1

Programme

Set the generator frequency $f_{gen}=1$ MHz. Make sure the pulses are symmetrical i.e. a duty factor is 1/2. Assembly a circuit shown in fig. 2. The set of plugs enables you to load the line with a number of different loads and to have a set of different input impedance values.

Generators used in this lab have an internal impedance $Z_{gen}=50\Omega$. To increase the input impedance over 50 Ω you have to add some serial impedance Z_a . To decrease the input impedance below 50 Ω you have to add some parallel impedance Z_b . A plug denoted with a single Ω gure may be used for Z_1 and Z_a while the only plug denoted with two Ω gures (0/50 Ω) is to be used for both Z_a and Z_b (0/50 Ω meaning $Z_a=0\Omega$ and $Z_b=50\Omega$).

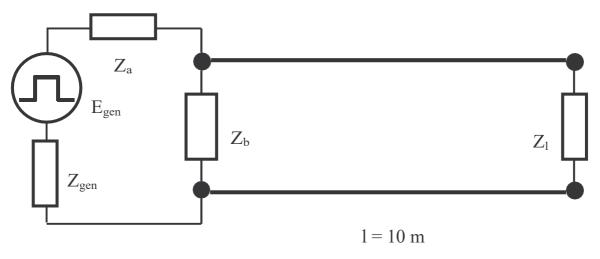


Fig. 2

- 1. Taking into account that line length l=10 m measure Z and v.
- 2. Observe voltages at line input and output for the following input and load impedances:
 - a). $Z_a=25\Omega$, $Z_l=\infty$ (line open)
 - b). $Z_a=25\Omega, Z_l=250\Omega$
 - c). $Z_a=25\Omega$, $Z_l=0$ (short circuit at the output)
 - d). $Z_a=25\Omega$, $Z_l = 1/SC$ (line loaded with a capacitor C = 1.5 nF)
 - e). $Z_a=0, Z_b=50\Omega, Z_l=\infty$ (line open)
 - f). $Z_a=0, Z_b=50\Omega, Z_l=0$ (short circuit at the output)
 - g). $Z_a=0, Z_b=50\Omega, Z_l=75\Omega$
 - h). $Z_a=250\Omega$, $Z_l=\infty$ (line open)
 - i). $Z_a=250\Omega$, $Z_l=0$ (short circuit at the output)
 - j). $Z_a=250\Omega, Z_l=75\Omega$
- 3. Check influence of oscilloscope cables and non-ideal pulse on observed waveforms.
- 4. Set $Z_a=0$, $Z_b=50 \ \Omega$, $Z_l=\infty$ (line open) and f_{gen} so that pulse period equals 4l/v (or equivalently pulse width equal 2l/v). Observe input and output voltages. (Set the trigger mode of the oscilloscope to the channel 2).

Report

- 1. Calculate v. Based on this estimate line primary parameters L and C (assume lossless line).
- 2. Draw observed waveforms (see items 2 and 4 in the "Programme" section) and compare them with theoretical calculations (also included and considered in the report).
- 3. Comment on item 3 in the "Programme" section.
- 4. Explain the waveforms observed at item 4.