CONSERVATION PRINCIPLES OF MATERIAL POINT

Main simplification of dynamics - particle as material point

Motion of particle in space determined by velocity vector in time

Primary concept of dynamics: MOMENTUM of body

$$\vec{p} = m \cdot \vec{v} = m \frac{d\vec{r}}{dt}$$

For translatory motion of particle:

change of particle position under influence of other particle(s) or system via force(s)

$$\vec{F} = \frac{d\vec{p}}{dt} = \frac{d(m \cdot \vec{v})}{dt} = m\frac{d\vec{v}}{dt} = m \cdot \vec{a}$$

Motion of particle - localized transport of:

- momentum
- angular momentum
- energy

determined by the respective conservation principles.

- Motion of particle determined by velocity vector in time
- When no force is acting on body, or all the forces acting are balanced thus $\vec{v}(t) = const$
- case of isolated particle: First Dynamics Principle NEWTON'S I LAW
- If no net external force acts on a particle

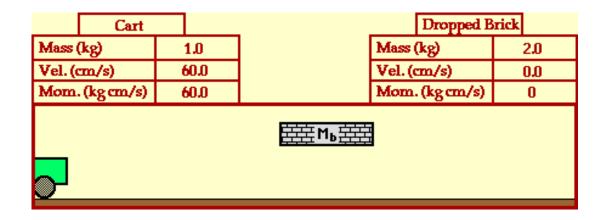
$$\sum_{i=1}^{n} F_{i}^{ext} + \sum_{i=1}^{n} F_{i}^{int} = 0$$

a total momentum of particle remains constant - principle of conservation of momentum

$$\vec{p}_t = \sum_{i=1}^n p_i = \text{const}$$

EXAMPLE 1:

Isolated system: cart and dropped brick



- before brick dropping:

$$\mathbf{M}_{\mathbf{c}} \cdot \boldsymbol{\upsilon}_{\mathbf{c}} \neq \boldsymbol{\theta}$$

after brick dropping:

$$M_{c} \cdot \upsilon_{c} = (M_{c} + M_{B}) \cdot \upsilon_{r}$$

Resultant velocity of system:

$$\upsilon_r = \frac{M_c \cdot \upsilon_c}{(M_c + M_B)}$$

EXAMPLE 2:

- Isolated system: man on a boat
- boat and man in rest steady state

$$p_t = (m_B + m_M) \cdot \upsilon = 0$$

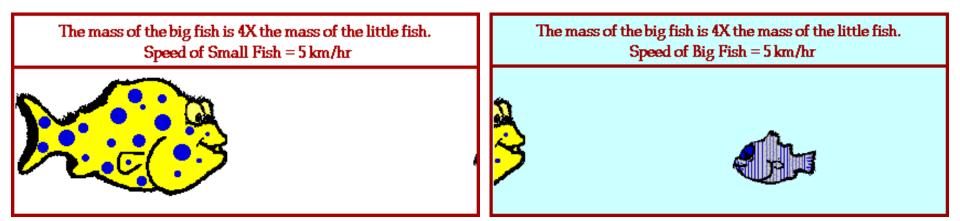
- man jumping (escaping) from a boat

$$p_t = m_B \cdot \upsilon_B - m_M \cdot \upsilon_M = 0$$

Resultant effect: motion of boat and man in opposite direction -Third Dynamics Principle – Newton's III Law

EXAMPLE 3:

• Fully inelastic "collision" of two fishes



Before swallow:

Big fish:
$$m_{BF} \cdot \upsilon_{BF} = 0$$
 Small fish: $m_{SF} \cdot \upsilon_{SF} \neq 0$

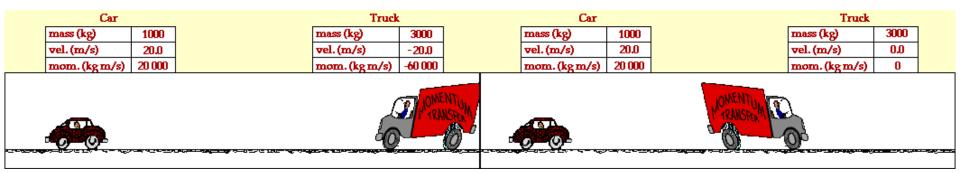
After swallow:

Joined system (small fish inside big fish):

 $m_{BF} \cdot \upsilon_{BF}(0) + m_{SF} \cdot \upsilon_{SF} = (m_{BF} + m_{SF}) \cdot \upsilon_r$

EXAMPLE 4:

• Fully inelastic collisions: car and track



Before collision:

Car: $m_C \cdot \upsilon_C \neq 0$ Track: $m_T \cdot \upsilon_T(-) \neq 0$

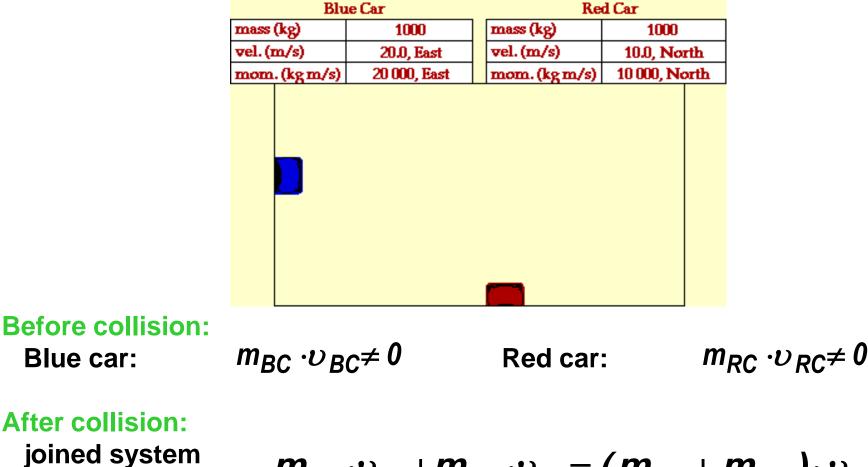
After collision:

Joined system:

$$m_{\rm C} \cdot \upsilon_{\rm C} - m_{\rm T} \cdot \upsilon_{\rm T} = -(m_{\rm C} + m_{\rm T}) \cdot \upsilon_{\rm r}$$

EXAMPLE 5:

• Fully inelastic collisions of two cars at side crash



 $\boldsymbol{m}_{BC} \cdot \boldsymbol{\upsilon}_{BC} + \boldsymbol{m}_{BC} \cdot \boldsymbol{\upsilon}_{RC} = (\boldsymbol{m}_{RC} + \boldsymbol{m}_{BC}) \cdot \boldsymbol{\upsilon}_{r}$

CONSERVATION PRINCIPLE OF ANGULAR MOMENTUM

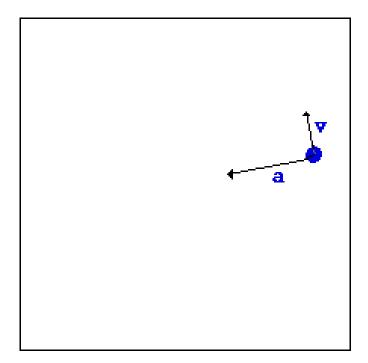
ANGULAR MOMENTUM

Appear at rotary motion of particle

$$\vec{L} = \boldsymbol{m} \cdot \vec{\boldsymbol{r}} \times \vec{\boldsymbol{\upsilon}} = \vec{\boldsymbol{r}} \times \vec{\boldsymbol{p}}$$

Under influence of torque (moment of force) force applied on particle with respect to axis of rotation of reference system – change of angular momentum of particle

$$\vec{M} = \vec{r} \times \vec{F} = \vec{r} \times \frac{d\vec{p}}{dt} = \frac{d}{dt}(\vec{r} \times \vec{p}) = \frac{d\vec{L}}{dt}$$



When no torque is acting on body angular momentum of particle remains constant

$$\vec{L} = \vec{r} \times \vec{p} = const$$

Principle of conservation of angular momentum

CONSERVATION PRINCIPLE OF ANGULAR MOMENTUM

EXAMPLE 1:

• Planar motion of planet in Solar System

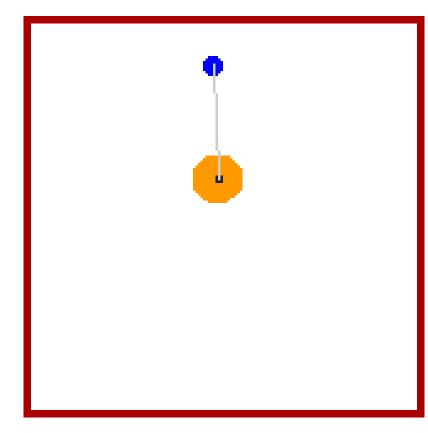
Constancy of angular momentum of particle

 $\vec{L} = \vec{r} \times \vec{p} = const$

Costancy of sweep velocity during motion on orbit

$$\vec{r} \times \vec{\upsilon} = const$$

II Kepler's law



Forms of mechanical energy of particle:

- Kinetic energy

Energy of particle in motion - mechanical work done by force F(s) at distance ds

$$W = \int_{0}^{s} F \cdot ds = \int_{0}^{s} m \frac{d\upsilon}{dt} \cdot ds = m \int_{0}^{\upsilon} \frac{ds}{dt} d\upsilon = m \int_{0}^{\upsilon} \upsilon \cdot d\upsilon = \frac{1}{2} m \cdot \upsilon^{2} = E_{k}$$

For isolated system: total kinetic energy constant

- Potential energy

Energy of particle determined by its position in space (field) – mechanical work required to change a position

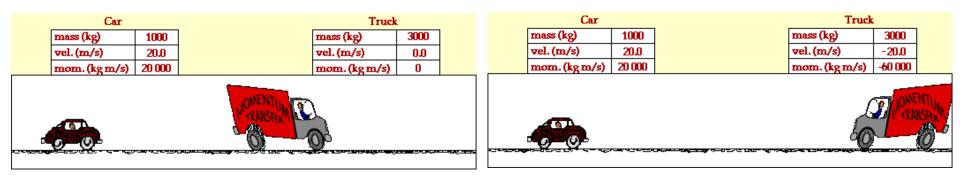
For gravitation:

$$W = \int_{o}^{s} F \cdot ds = \int_{o}^{s} m \cdot g \cdot ds = m \cdot g \int_{o}^{s} ds = m \cdot g \int_{o}^{h} dh = m \cdot g \cdot h = E_{p}$$

CONSERVATION OF MOMENTUM AND ENERGY

EXAMPLE 1:

• Fully elastic collisions: car and track



Before collision:

Car: $m_C \cdot \upsilon_C \neq 0$ Track: $m_T \cdot \upsilon_T \neq 0$

After collision:

$$m_{\mathbf{C}} \cdot \upsilon_{\mathbf{C}1} + m_{\mathbf{T}} \cdot \upsilon_{\mathbf{T}1} = -m_{\mathbf{C}} \cdot \upsilon_{\mathbf{C}2} + m_{\mathbf{T}} \cdot \upsilon_{\mathbf{T}2}$$

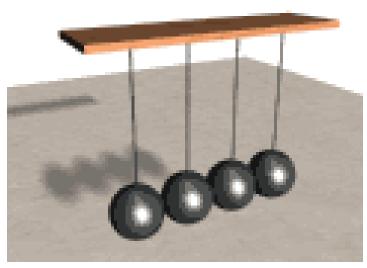
Kinetic energy after collision:

$$\frac{1}{2}m_{C}\cdot\upsilon_{C1}^{2}+\frac{1}{2}m_{T}\cdot\upsilon_{T1}^{2}=\frac{1}{2}m_{C}\cdot\upsilon_{C2}^{2}+\frac{1}{2}m_{T}\cdot\upsilon_{T2}^{2}$$

CONSERVATION OF MOMENTUM AND ENERGY

EXAMPLE 2:

 Balls on threads (Newton's pendulum) (Fully elastic collisions)



At collision:

momentum of right ball \leftrightarrow momentum of left ball

 $m_{RB} \cdot \upsilon_{RB} = m_{LB} \cdot \upsilon_{LB}$

kinetic energy of right ball \leftrightarrow kinetic energy of left ball

$$\frac{1}{2}m_{RB}\cdot\upsilon_{RB}^2=\frac{1}{2}m_{LB}\cdot\upsilon_{LB}^2$$

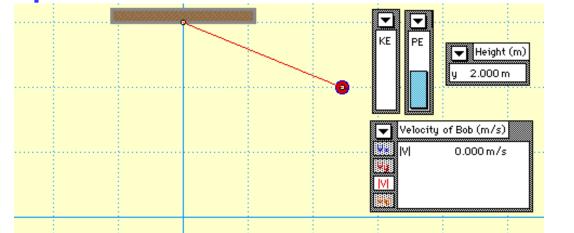
Principle of conservation of mechanical energy

For isolated system: total mechanical energy is constant

$$E_k + E_p = const$$

EXAMPLE 1:

• Mathematical pendulum



Potential energy depends on h

Kinetic energy depends on

 $E_p = m \cdot g \cdot h$ $\upsilon = \sqrt{2g \cdot h}$

During a motion: exchange of forms of energy according to the condition

$$E_{p} + E_{k} = m \cdot g \cdot h + \frac{1}{2}m \cdot \upsilon^{2} = const$$

EXAMPLE 2:

- Free falling of ball from bent Pisa tower (air resistance neglected)
- At top: potential energy (max)

$$\Xi_{p} = m \cdot g \cdot h$$

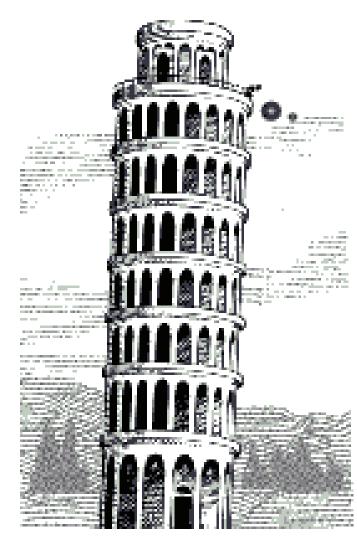
At bottom: kinetic energy (max)

$$E_k = \frac{1}{2}m \cdot \upsilon^2$$

During a motion: exchange of forms of energy according to the condition

$$E_p + E_k = m \cdot g \cdot h + \frac{1}{2}m \cdot \upsilon^2 = \text{const}$$

Resultant velocity $v = \sqrt{2g \cdot h}$



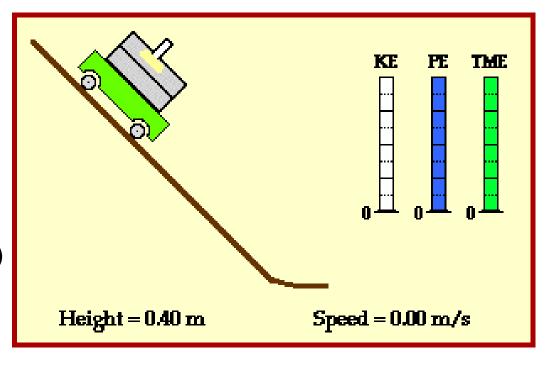
EXAMPLE 3:

- Car descent from slope
- At top: potential energy (max)

$$E_p = m \cdot g \cdot h$$

At bottom: kinetic energy (max)

$$E_k = \frac{1}{2}m \cdot \upsilon^2$$

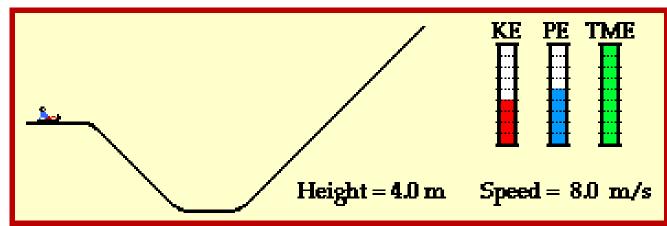


During a motion: exchange of forms of energy according to the condition

$$E_p + E_k = m \cdot g \cdot h + \frac{1}{2}m \cdot \upsilon^2 = \text{const}$$

EXAMPLE 4:

• Car motion on slope



Starting kinetic energy at the top

$$E_{k1} = \frac{1}{2} m \cdot v_1^2$$
$$E_{p1} = m \cdot g \cdot h_1$$

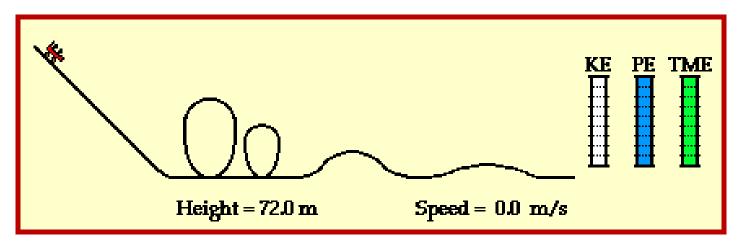
Starting potential energy at the top

During a motion: exchange of forms of energy according to the condition

$$m \cdot g \cdot h_1 + \frac{1}{2}m \cdot v_1^2 = m \cdot g \cdot h_2 + \frac{1}{2}m \cdot v_2^2 = const$$

EXAMPLE 5:

• Car motion on sequential loops



Potential energy depends on h $E_p = m \cdot g \cdot h$ Kinetic energy depends on $\upsilon = \sqrt{2g \cdot h}$

During a motion: exchange of forms of energy according to

$$E_p + E_k = m \cdot g \cdot h + \frac{1}{2}m \cdot \upsilon^2 = const$$