CONSERVATION PRINCIPLES OF MATERIAL POINT

Main simplification of dynamics - particle as material point

Motion of particle in space determined by velocity vector in time

Primary concept of dynamics: MOMENTUM of body

$$
\vec{p} = m \cdot \vec{v} = m \frac{d\vec{r}}{dt}
$$

For translatory motion of particle:

change of particle position under influence of other particle(s) or system via force(s) For translatory motion of particle:

change of particle position under influence of other pa

via force(s)
 $\vec{F} = \frac{d\vec{p}}{dt} = \frac{d(m \cdot \vec{v})}{dt} = m \cdot \vec{a}$

Motion of particle - localized transport of:

- momentum

- angula \vec{p} d(m \vec{v}) d \vec{v}

$$
\vec{F} = \frac{d\vec{p}}{dt} = \frac{d(m \cdot \vec{v})}{dt} = m \frac{d\vec{v}}{dt} = m \cdot \vec{a}
$$

Motion of particle - localized transport of:

- **momentum**
- **angular momentum**
- **energy**

- **Motion of particle determined by velocity vector in time**
- **When no force is acting on body, or all the forces acting are balanced thus** $\vec{v}(t)$ = const
- **- case of isolated particle: First Dynamics Principle - NEWTON'S I LAW**
- **If no net external force acts on a particle**

$$
\sum_{i=1}^{n} F^{ext} + \sum_{i=1}^{n} F^{int} = 0
$$

a total momentum of particle remains constant principle of conservation of momentum

$$
\vec{p}_t = \sum_{i=1}^n p_i = const
$$

EXAMPLE 1:

Isolated system: cart and dropped brick

- before brick dropping:

$$
M_c \cdot v_c \neq 0
$$

- after brick dropping:

$$
M_{C}\cdot v_{C}=(M_{C}+M_{B})\cdot v_{r}
$$

Resultant velocity of system:

$$
v_r = \frac{M_c \cdot v_c}{(M_c + M_B)}
$$

EXAMPLE 2:

- **Isolated system: man on a boat**
- **- boat and man in rest - steady state**

 $p_t = (m_B + m_M) \cdot \upsilon = 0$

- man jumping (escaping) from a boat

$$
p_t = m_B \cdot \nu_B - m_M \cdot \nu_M = 0
$$

Resultant effect: motion of boat and man in opposite direction - Third Dynamics Principle – Newton's III Law

EXAMPLE 3:

• Fully inelastic "collision" of two fishes

Before swallow:

Big fish:
$$
m_{BF} \cdot v_{BF} = 0
$$
 Small fish: $m_{SF} \cdot v_{SF} \neq 0$

After swallow:

 Joined system (small fish inside big fish):

 $m_{BF} \cdot v_{BF}(0) + m_{SF} \cdot v_{SF} = (m_{BF} + m_{SF}) \cdot v_{F}$

EXAMPLE 4:

Fully inelastic collisions: car and track

Before collision:

Car: $m_C \cdot \nu_C \neq 0$ Track: $\neq 0$ Track: $m_T \cdot \nu_T(-) \neq 0$

After collision:

Joined system:

$$
m_C \cdot v_C - m_T \cdot v_T = -(m_C + m_T) \cdot v_r
$$

EXAMPLE 5:

Fully inelastic collisions of two cars at side crash

 $m_{BC} \cdot v_{BC} + m_{BC} \cdot v_{RC} = (m_{RC} + m_{BC}) \cdot v_{R}$

CONSERVATION PRINCIPLE OF ANGULAR MOMENTU

ANGULAR MOMENTUM

Appear at rotary motion of particle

$$
\vec{L} = m \cdot \vec{r} \times \vec{v} = \vec{r} \times \vec{p}
$$

Under influence of torque (moment of force) force applied on particle with respect to axis of rotation of reference system – change of angular momentum of particle $\vec{L} = m \cdot \vec{r} \times \vec{v} = \vec{r} \times \vec{p}$

Under influence of torque (moment of force) -

force applied on particle with respect to

axis of rotation of reference system –

change of angular momentum of particle
 $\vec{M} = \vec{r} \$

$$
\vec{M} = \vec{r} \times \vec{F} = \vec{r} \times \frac{d\vec{p}}{dt} = \frac{d}{dt}(\vec{r} \times \vec{p}) = \frac{d\vec{L}}{dt}
$$

When no torque is acting on body angular momentum of particle remains constant $\overrightarrow{ }$ \overrightarrow{a} \overrightarrow{a}

$$
\vec{L} = \vec{r} \times \vec{p} = \text{const}
$$

CONSERVATION PRINCIPLE OF ANGULAR MOMENTUM

EXAMPLE 1:

Planar motion of planet in Solar System

Constancy of angular momentum of particle

 $\vec{L} = \vec{r} \times \vec{p} = const$ \vec{I} \vec{v} \vec{v}

Costancy of sweep velocity during motion on orbit

$$
\vec{r}\times\vec{\nu}=\text{const}
$$

II Kepler's law

Forms of mechanical energy of particle:

- Kinetic energy

 Energy of particle in motion - mechanical work done by force *F(s)* **at distance** *ds*

$$
W = \int_{0}^{s} F \cdot ds = \int_{0}^{s} m \frac{d\upsilon}{dt} \cdot ds = m \int_{0}^{\upsilon} \frac{ds}{dt} d\upsilon = m \int_{0}^{\upsilon} \upsilon \cdot d\upsilon = \frac{1}{2} m \cdot \upsilon^{2} = E_{k}
$$

For isolated system: total kinetic energy constant

- Potential energy

 Energy of particle determined by its position in space (field) – mechanical work required to change a position

 For gravitation:

$$
W = \int_{0}^{s} F \cdot ds = \int_{0}^{s} m \cdot g \cdot ds = m \cdot g \int_{0}^{s} ds = m \cdot g \int_{0}^{h} dh = m \cdot g \cdot h = E_{p}
$$

CONSERVATION OF MOMENTUM AND ENERGY

EXAMPLE 1:

Fully elastic collisions: car and track

Before collision:

Car: $m_C \cdot \nu_C \neq 0$ Track: $\neq 0$ Track: $m_T \cdot v_T \neq 0$

After collision:

$$
m_C \cdot \nu_{C1} + m_T \cdot \nu_{T1} = -m_C \cdot \nu_{C2} + m_T \cdot \nu_{T2}
$$

Kinetic energy after collision:

$$
\frac{1}{2}m_C \cdot \nu_{C1}^2 + \frac{1}{2}m_T \cdot \nu_{T1}^2 = \frac{1}{2}m_C \cdot \nu_{C2}^2 + \frac{1}{2}m_T \cdot \nu_{T2}^2
$$

CONSERVATION OF MOMENTUM AND ENERGY

EXAMPLE 2:

•**Balls on threads (Newton's pendulum) (Fully elastic collisions)**

At collision:

momentum of right ball \leftrightarrow momentum of left ball

 kinetic energy of right ball kinetic energy of left ball *Principle of conservation of mechanical energy
<i>Principle of conservation of mechanical energy*
Principle of conservation of mechanical energy

$$
\frac{1}{2}m_{RB}\cdot v_{RB}^2=\frac{1}{2}m_{LB}\cdot v_{LB}^2
$$

For isolated system: total mechanical energy is constant

$$
E_k + E_p = const
$$

EXAMPLE 1:

Mathematical pendulum

Potential energy depends on *h* **Kinetic energy depends on**

 $E_{\bm{\rho}} = m \cdot \bm{g} \cdot \bm{h}$ $\boldsymbol{\nu} = \sqrt{2g} \cdot \boldsymbol{h}$

During a motion: exchange of forms of energy according to the condition

$$
E_p + E_k = m \cdot g \cdot h + \frac{1}{2} m \cdot v^2 = \text{const}
$$

EXAMPLE 2:

- **Free falling of ball from bent Pisa tower (air resistance neglected)**
- **At top: potential energy (max)**

$$
E_p = m \cdot g \cdot h
$$

At bottom: kinetic energy (max)

$$
E_k=\frac{1}{2}m\cdot v^2
$$

During a motion: exchange of forms of energy according to the condition

$$
E_p + E_k = m \cdot g \cdot h + \frac{1}{2} m \cdot v^2 = \text{const}
$$

Resultant velocity $v = \sqrt{2g} \cdot h$

Typical behaviour for field of conservative forces

EXAMPLE 3:

- **Car descent from slope**
- **At top: potential energy (max)**

$$
\boldsymbol{E}_{\boldsymbol{p}} = \boldsymbol{m} \cdot \boldsymbol{g} \cdot \boldsymbol{h}
$$

At bottom: kinetic energy (max)

$$
E_k=\frac{1}{2}m\cdot v^2
$$

During a motion: exchange of forms of energy according to the condition

$$
E_p + E_k = m \cdot g \cdot h + \frac{1}{2}m \cdot v^2 = \text{const}
$$

EXAMPLE 4:

Car motion on slope

Starting kinetic energy at the top

$$
E_{k1} = \frac{1}{2} m \cdot v_1^2
$$

$$
E_{p1} = m \cdot g \cdot h_1
$$

Starting potential energy at the top

During a motion: exchange of forms of energy according to the condition

$$
m \cdot g \cdot h_1 + \frac{1}{2} m \cdot v_1^2 = m \cdot g \cdot h_2 + \frac{1}{2} m \cdot v_2^2 = \text{const}
$$

Typical behaviour for field of conservative forces

EXAMPLE 5:

Car motion on sequential loops

Potential energy depends on *h* **Kinetic energy depends on** $E_p = m \cdot g \cdot h$ $v = \sqrt{2g} \cdot h$

During a motion: exchange of forms of energy according to

$$
E_p + E_k = m \cdot g \cdot h + \frac{1}{2}m \cdot v^2 = \text{const}
$$

Typical behaviour for field of conservative forces