OSCILLATORY MOTIONS - VIBRATIONS
NATURE

A periodical motion (vibration) of particle (material point) with respect to
constant equilibrium position
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CAUSE

Time dependent force F(t) - natural tendency of return of vibrating point to
reference (starting) position

X(t)=x(t+T)



OSCILLATORY MOTIONS - VIBRATIONS

CLASSIFICATION:

SOURCES:
- mechanical vibrations: pendulum, quitar string, engine piston, ...
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- electric oscillations: electric circuits

FORMS:
- simple harmonic motion (free vibrations)
- damped oscillatory motion (damped vibrations)
- damped and then forced (damped and forced vibrations)
- complex oscillatory motions (paralell and perpendicular vibrations)



SIMPLE HARMONIC MOTION
NATURE

Periodical oscillations of mass (material point) fixed to helical spring with
respect to constant equilibrium position — simple harmonic motion

under restoring force F.=-k-Xx

where: k - elastic constant according to Hooke’s law (unit force)
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SIMPLE HARMONIC MOTION
NATURE

Periodical oscillations - simple harmonic motion - harmonic oscillator

Time dependent position of oscillating
material point along proper axes

x=Acos(w-t+¢)
y=Asin(o-t+¢) I =
=3

where: A - amplitude - maximal displacement x for which

sinfow-t+¢)=1

@ - angular frequency a)=2_ﬂ=2ﬂ-.f

T

@ - phase constant (angle)



KINEMATICS OF SIMPLE HARMONIC MOTION

BASIC KINEMATIC PARAMETERS:

- displacement - position with respect to equilibrium

x=Acos(ow-t+¢)
- velocity - time dep. variation X

dx :
v=—=—-A-o-Sin(w-t+
¢ ( )
- acceleration - time dep. variation of
dv d’x
a= = 2
dt dt
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=—A-a)2-cos(a)-t+(o)=—a) - X

- differential equation of harmonic oscillator



DYNAMICS OF SIMPLE HARMONIC MOTION
CAUSE OF VIBRATION

Restoring force - cause of periodical oscillations of mass (material point)
with respect to constant equilibrium

2
F=m-a=m% X ;(=—k-x
dt

where: k - elastic constant - driving force because for x=1 k = \F\

After transformation d?x
m

+k-x=0

t2

- differential equation of simple harmonic (free) vibrations
having simplest solution function (displacement)

x=Acos(w,-t+¢)

: m
at free vibration frequency: @, = /5 and/or period To =27 /;
m



DYNAMICS OF SIMPLE HARMONIC MOTION
EXAMPLE:

- simple (mathematical) pendulum

Periodical vibrations (oscillations) of mass m on lightweight string
of length | along circle with respect to equilibrium position

Two boundary cases:

- at rest:
string hangs vertically

- after deflection | |
restoring force which cause of periodical oscHIatlons of mass
(material point) on lightweight with respect to constant equilibrium
- gravitational force (?)



DYNAMICS OF SIMPLE HARMONIC MOTION

- simple (mathematical) pendulum

Restoring force of simple pendulum - tangential component of
gravitational force

F.=m-g, =—-m-g-sing

Only for small angle up to 7°

: S
SINp=tgep =—
L
thus acceleration of simple pendulum
a —dzs——g > %5
° o dt? L

mg cosh

- differential equation of simple pendulum

'k 'm
oscillation frequency: @, =./— and/or period To =27 F
m



DYNAMICS OF SIMPLE HARMONIC MOTION
ENERGY

Two forms of mechanical energy of oscillating mass (material point):

potential and kinetic energy rnetie sneray
1
- . . DS
For harmonic oscillator - displacement D\AAL £ s
of material point on spring from rotential enerey

1

equilibrium position
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Mechanical work done by external force
for displacement x against elastic force
of spring - potential energy of spring
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kinstic + potential
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W = [F(x)dx = —k | xdx = %kxz = %kAz cos’(wt+¢)=E,
o o

transforms on kinetic energy causes return to equilibrium state

1 2 1 dx 2 1 2 .. 92
E, = mv=—m(— ) =—mA” sin t+
k=5 v 2 (dt) 2 (ot +9)



DYNAMICS OF SIMPLE HARMONIC MOTION
ENERGY

Total mechanical energy of harmonic oscillator

1 2 1 2 1 2 1 dX2
E=E +E,=—kx“+ -—mv°-=—kx-+—-—m(—
ptEc=kxt+omot = kxm+om( )

After substitution

E=%k~A2 cosz(wt+qo)+%m-a)2A2 sin’(wt + @)

Because k = mao?

_ 1 2 52 2 1 2 1 2
E_Ema) A“ cos (a)t+(p)+§ma> A? sin (a)t+(p)——ma) A
For isolated simple harmonic motion exchange 1
of potential energy on kinetic energy, and inversely

- total mechanical energy remains constant -
conservation principle of mechanical energy ! ’




DAMPED OSCILLATORY MOTION

NATURE
Simple harmonic oscillations under influence of elastic force
d?x
F=m-a= m? =—K-X
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- decay of oscillatory motion
- damping force always directed against simple harmonic oscillations



DAMPED OSCILLATORY MOTION

Only for small velocity v damping force

where: b - coefficient of medium resistance (internal friction)

According to Il dynamics principle a net force of damped oscillations

2
m%+k~x+b-u=0

- differential equation of damped oscillatory motion
having simplest solution function (displacement) at conditions:
- it reduces to simple oscillations without damping, whenb — 0
- it exhibits amplitude reducing in time with damping, when b =0
In form b

~ 2t
x=e2m .A .cos(w-t+p)=e".A, -cos(o-t+9)

where: o = Ja)f —b?/4m? - angular frequency of damped oscillations

B = 2’; - damping coefficient (vibrations decay c.)



DAMPED OSCILLATORY MOTION

Displacement x(t) in damped oscillations depends on absolute value of

o=l —b? | 4m?

3 boundary conditions:
B | Damped Free Vibration EI@

File Mext Previous All Stop Fast  Slow

overdamped critical damped underdamped




DAMPED OSCILLATORY MOTION

- weak damping (o > 0)

(underdamping) B\W
B

k b? _
m 4m? o

a0

Slow returning of oscillating point to equilibrium state at

- angular frequency @ = Jwﬁ -b*/4m* = \/a)f —,32 = @,
. _ by
- amplitude A=A, -e 2m =Ao-e_ﬂt

Final effect: with additional simplification - almost periodic oscillations



DAMPED OSCILLATORY MOTION

For weak damping after proper time corresponding to period T
amplitude of damped oscillatory motion

A1 —_ AO * e—ﬂt

After time related to period

t=n-T

It reaches a form
_ -n-B-T _ -n-A
A=A - e =A -e

(0]

where:

A=f-T

or - logarithmic decrement of damping

A=In A

n

n+1



DAMPED OSCILLATORY MOTION

- Strong or critical damping (o = 0) k b?
m 4m?
E\ B*\
5 E
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Final effect:

returns of oscillating point to equlibrium without its crossing (line) —
aperiodic function of decay

x=Ae " (1+p8-t)



DAMPED OSCILLATORY MOTION

Direct comparison of undamped and damped vibration of different
damping mechanism

undamped damped for various B=r
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DAMPED AND FORCED OSCILLATORY MOTION

Damped oscillatory motion after decay as a result of damping
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can be restored to previous harmonic oscillations by external input force



DAMPED AND FORCED OSCILLATORY MOTION

According to Il Newton’s law a net force of damped and then forced

Hiati
oscillations F.=F, .cos(2-t)
Thus
2
mdiz+bd—x+k~x=Focos(Q~t)
dt dt
or
dx?

e +2,B(2l—)t(+a)§ X =B-.cos(£-t)

- differential equation of damped oscillatory motion
having solution (displacement) in form of periodic function

x=A-cos(2-t—-d)

B
A=
where: \/(a)g —0?%)+4p%0? -amplitude
tgd = 22'3'“(22 - phase

@, — 2



DAMPED AND FORCED OSCILLATORY MOTION

Special case: absence of damping =0

Amplitude = °

When @, = {2
Amplitude A= o0
General case: with damping g #0

Amplitude:
B
W} -0%)+4p°02"

At particular @ and weak damping (small /)
amplitude of forced oscillations reaches
a maximum - effect of resonance

A=

Amplitude

natural frequency
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COMPLEX OSCILLATORY MOTION

NATURE
Real oscillations: superposition of different component oscillations
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Only possible description - every oscillation treated as superposition
of linear harmonic oscillations

x,=A,-cos(a,t+¢,) —

Two boundary cases: e —
- parallel oscillations
- perpendicular oscllations <



PARALLEL OSCILLATORY MOTION

Superposition of linear harmonic oscillations in one direction —
3 boundary cases:

- at identical angular frequency: @, = @y = ® = const

Net displacement

x=A-cos(at+¢)

When
A=\/A12 +Az2 +2A,-A,-cos(p, —p,) /\/\/\/
Net phase o

A, .cosp,+ A, -cos g,
Two boundary cases:

- phase coincidence - amplitude summation
- phase non-coincidence - amplitude substraction




PARALLEL OSCILLATORY MOTION

- at close angular frequency: o+ Ao

Net displacement

x=2A-cosw-t-cosdAw -t
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Aw < 16Hz
I.e. in the audible region ﬂ ﬂ ﬂ ﬂ JF"- tnf
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- effect of beat




PARALLEL OSCILLATORY MOTION

- at different angular frequency: anharmonic oscillations

Only possible solution for arythmetic sequence: @,20,3®,.-N®
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Net displacement

x =Y A,cos(not+p)

n=1
Component oscillations: first, second, third, ... harmonics
Important inverse problem:

decomposition of arbitrary periodic oscillations for single harmonic
oscillations of different amplitudes - Fourier analysis



PARALLEL OSCILLATORY MOTION
FOURIER ANALYSIS

Two most common examples:

- pulse type oscillations

- square type oscillations

Vo
N




PARALLEL OSCILLATORY MOTION

SUPERPOSITION

Simplified case: two pulses

- different amplitude 1.5
1.25

- different frequency A
- oposite direction 0.75
a.5
Q.25
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Two possible effects:
- convolution of two component pulses (oscillations) to complex form
- deconvolution of complex form into two component pulses (oscillations)



PERPENDICULAR OSCILLATORY MOTION

Superposition of at least two linear harmonic perpendicular oscillations
along two perpendicular x and y axes

Net oscillations - curve at xy plane - Lissajous figures (curves)

Two boundary cases:

- for identical angular frequency:

Superposition of two components 0 =0° ¢ = 45° 0 =90°

X=A1'COS(wt+¢1) ...............

y=A,-cos(at+¢,) A1AE/..&

For net oscillations at 49 =7/2

X2 y2_1 A <A | / &
elipse on xy plane A12 +A22 - | | ] |

Specific case: for the same amplitude a net ocillation - a circle



PERPENDICULAR OSCILLATORY MOTION

- for different angular frequencies:
superposition of two components

x=A,.-cos(n,-ot+¢,)

Net oscillations: Lissajous figures (curves)

Most popular case:
electric oscillations

P =
Final shape depends on:
- angular frequency ratio

¢ =45 |

@, . O,

- phase shift

P=90°

Ap =@, - ¢

y=A,-cos(n, -ot+¢,)

0° |
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PERPENDICULAR OSCILLATORY MOTION

- at different angular frequencies:
superposition of two components

Lissajous figures at different angular frequency ratio @, ' @,

Lissajous 1:1 Lissajous 1:2

Lissajous 1:3

Lissajous 2:3 Lissajous 4:7




