
OSCILLATORY MOTIONS - VIBRATIONS 

NATURE

A periodical motion (vibration) of particle (material point) with respect to 

constant equilibrium position

CAUSE
Time dependent force F(t) - natural tendency of return of vibrating point to 

reference (starting) position
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OSCILLATORY MOTIONS - VIBRATIONS 

CLASSIFICATION:

SOURCES:

- mechanical vibrations: pendulum, quitar string, engine piston, ...   

- electric oscillations: electric circuits

FORMS:

- simple harmonic motion (free vibrations)

- damped oscillatory motion (damped vibrations)

- damped and then forced (damped and forced vibrations) 

- complex oscillatory motions (paralell and perpendicular vibrations) 



SIMPLE HARMONIC MOTION 

NATURE

Periodical oscillations of mass (material point) fixed to helical spring with 

respect to constant equilibrium position – simple harmonic motion

under restoring force 

where:  k - elastic constant according to Hooke’s law (unit force)
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SIMPLE HARMONIC MOTION 

NATURE

Periodical oscillations - simple harmonic motion - harmonic oscillator 

Time dependent position of oscillating 

material point along proper axes

where:  A - amplitude - maximal displacement  x for which 

 - angular frequency  

 - phase constant (angle)
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KINEMATICS OF SIMPLE HARMONIC MOTION 

BASIC KINEMATIC PARAMETERS:

- displacement - position with respect to equilibrium  

- velocity - time dep. variation x  

- acceleration - time dep. variation of 

- differential equation of harmonic oscillator 
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DYNAMICS OF SIMPLE HARMONIC MOTION 

CAUSE OF VIBRATION 

Restoring force - cause of periodical oscillations of mass (material point) 

with respect to constant  equilibrium 

where: k - elastic constant  - driving force because for x=1

After transformation  

- differential equation of simple harmonic (free) vibrations  

having simplest solution function (displacement)

at free vibration frequency:                            and/or period
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DYNAMICS OF SIMPLE HARMONIC MOTION 

EXAMPLE:

- simple (mathematical) pendulum

Periodical vibrations (oscillations) of mass m on lightweight string

of length l along circle with respect to equilibrium position  

Two boundary cases:

- at rest: 

string hangs vertically

- after deflection 

restoring force which cause of periodical oscillations of mass 

(material point) on lightweight with respect to constant  equilibrium 

- gravitational force (?)



DYNAMICS OF SIMPLE HARMONIC MOTION 

- simple (mathematical) pendulum

Restoring force of simple pendulum - tangential component of 

gravitational force 

Only for small angle up to 7

thus acceleration of simple pendulum  

- differential equation of simple pendulum

oscillation frequency:                         and/or period
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DYNAMICS OF SIMPLE HARMONIC MOTION 

ENERGY

Two forms of mechanical energy of oscillating mass (material point): 

potential and kinetic energy

For harmonic oscillator - displacement 

of material point on spring from 

equilibrium position

Mechanical work done by external force

for displacement x against elastic force

of spring - potential energy of spring

transforms on kinetic energy causes return to equilibrium state
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DYNAMICS OF SIMPLE HARMONIC MOTION 

ENERGY

Total mechanical energy of harmonic oscillator

After substitution

Because

For isolated simple harmonic motion exchange 

of potential energy on kinetic energy, and inversely 

- total mechanical energy remains constant -

conservation principle of mechanical energy !     

2222
kp )

dt

dx
(m

2

1
kx

2

1
m

2

1
kx

2

1
EEE  

)t(sinAm
2

1
)t(cosAk

2

1
E 22222  

2mk 

22222222 Am
2

1
)t(sinAm

2

1
)t(cosAm

2

1
E  



DAMPED OSCILLATORY MOTION 

NATURE

Simple harmonic oscillations under influence of elastic force  

can be damped by force related to medium resistance (internal friction)

- decay of oscillatory motion 

- damping force always directed against simple harmonic oscillations 
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DAMPED OSCILLATORY MOTION 

Only for small velocity   damping force   

where:  b - coefficient of medium resistance (internal friction)

According to II dynamics principle a net force of damped oscillations

- differential equation of damped oscillatory motion 

having simplest solution function (displacement) at conditions:

- it reduces to simple oscillations without damping, when b  0

- it exhibits amplitude reducing in time with damping, when b  0

in form  

where:                                        - angular frequency of damped oscillations

- damping coefficient (vibrations decay c.)
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DAMPED OSCILLATORY MOTION 

Displacement  x(t) in damped oscillations depends on absolute value of

3 boundary conditions: 
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DAMPED OSCILLATORY MOTION 

- weak damping ( > 0) 

(underdamping) 

Slow returning of oscillating point to equilibrium state at 

- angular frequency  

- amplitude  

Final effect: with additional simplification - almost periodic oscillations
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DAMPED OSCILLATORY MOTION 

For weak damping after proper time corresponding to period  T

amplitude of damped oscillatory motion 

After time related to period  

it reaches a form  

where:                    

or                          - logarithmic decrement of damping  
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DAMPED OSCILLATORY MOTION 

- Strong or critical damping ( = 0)    

Final effect: 

returns of oscillating point to equlibrium without its crossing (line) –

aperiodic function of decay  
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DAMPED OSCILLATORY MOTION 

Direct comparison of undamped and damped vibration of different 

damping mechanism

undamped damped for various =r       



DAMPED AND FORCED OSCILLATORY MOTION 

Damped oscillatory motion after decay as a result of damping 

can be restored to previous harmonic oscillations by external input force  



DAMPED AND FORCED OSCILLATORY MOTION 

According to II Newton’s law a net force of damped and then forced 

oscillations  

Thus

or

- differential equation of damped oscillatory motion 

having solution (displacement) in form of periodic function  

where: - amplitude

- phase
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DAMPED AND FORCED OSCILLATORY MOTION 

Special case: absence of damping   = 0

Amplitude

When                     

Amplitude      

General case:  with damping   0

Amplitude:

At particular  and weak damping (small ) 

amplitude of forced oscillations reaches 

a maximum - effect of resonance
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COMPLEX OSCILLATORY MOTION 

NATURE
Real oscillations:  superposition of different component oscillations

Only possible description - every oscillation treated as superposition

of linear harmonic oscillations 

Two boundary cases:  

- parallel oscillations

- perpendicular oscllations 
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PARALLEL OSCILLATORY MOTION 

Superposition of linear harmonic oscillations in one direction –

3 boundary cases:  

- at identical angular frequency:  

Net displacement

When 

Net phase 

Two boundary cases: 

- phase coincidence - amplitude summation 

- phase non-coincidence - amplitude substraction  
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PARALLEL OSCILLATORY MOTION 

- at close angular frequency:

Net displacement

Specific case when 

i.e. in the audible region

- effect  of  beat
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PARALLEL OSCILLATORY MOTION 

- at different angular frequency:  anharmonic oscillations

Only possible solution for arythmetic sequence:   

Net displacement

Component oscillations: first, second, third, ... harmonics 

Important inverse problem: 

decomposition of arbitrary periodic oscillations for single harmonic 

oscillations of different amplitudes - Fourier analysis
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PARALLEL OSCILLATORY MOTION 

FOURIER ANALYSIS

Two most common examples:

- pulse type oscillations   

- square type oscillations



PARALLEL OSCILLATORY MOTION 

SUPERPOSITION

Simplified case: two pulses 

- different amplitude

- different frequency

- oposite direction  

Two possible effects:

- convolution of two component pulses (oscillations) to complex form 

- deconvolution of complex form into two component pulses (oscillations) 



PERPENDICULAR OSCILLATORY MOTION 

Superposition of at least two linear harmonic perpendicular oscillations 

along two perpendicular x and y axes  

Net oscillations - curve at xy plane - Lissajous figures (curves)

Two boundary cases:  

- for identical angular frequency:  

Superposition of two components 

For net oscillations at 

elipse on xy plane

Specific case: for the same amplitude a net ocillation - a circle 
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PERPENDICULAR OSCILLATORY MOTION 

- for different angular frequencies:  

superposition of two components

Net oscillations: Lissajous figures (curves) 

Most popular case: 

electric oscillations

Final shape depends on:

- angular frequency ratio  

- phase shift   
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PERPENDICULAR OSCILLATORY MOTION 

- at different angular frequencies:  

superposition of two components

Lissajous figures at different angular frequency ratio  yx : 


