OSCILLATORY MOTIONS - VIBRATIONS

NATURE

A periodical motion (vibration) of particle (material point) with respect to constant equilibrium position

CAUSE

Time dependent force *F(t)* **- natural tendency of return of vibrating point to reference (starting) position**

$$
x(t) = x(t+T)
$$

OSCILLATORY MOTIONS - VIBRATIONS

CLASSIFICATION:

SOURCES:

- mechanical vibrations: pendulum, quitar string, engine piston, ...

<u>MINITO (SAMINITO (SAMINITO) (SAMINITO) (SAMINITO (SAMINITO) (</u>

- electric oscillations: electric circuits

FORMS:

- **- simple harmonic motion (free vibrations)**
- **- damped oscillatory motion (damped vibrations)**
- **- damped and then forced (damped and forced vibrations)**
- **- complex oscillatory motions (paralell and perpendicular vibrations)**

SIMPLE HARMONIC MOTION

NATURE

- **Periodical oscillations of mass (material point) fixed to helical spring with respect to constant equilibrium position – simple harmonic motion**
- **under restoring force** $F_s = -k \cdot x$
- **where:** *k* **- elastic constant according to Hooke's law (unit force)**

SIMPLE HARMONIC MOTION

NATURE

Periodical oscillations - simple harmonic motion - harmonic oscillator

Time dependent position of oscillating material point along proper axes

$$
x = A\cos(\omega \cdot t + \varphi)
$$

$$
y = A\sin(\omega \cdot t + \varphi)
$$

where: *A* **- amplitude - maximal displacement** *x* **for which**

$$
x = A\cos(\omega \cdot t + \varphi)
$$

\n
$$
y = A\sin(\omega \cdot t + \varphi)
$$

\nA - amplitude - maximal displacement *x* for v
\n
$$
\sin(\omega \cdot t + \varphi) = 1
$$

\n
$$
\omega
$$
- angular frequency
$$
\omega = \frac{2\pi}{T} = 2\pi \cdot f
$$

\n
$$
\varphi
$$
- phase constant (angle)

KINEMATICS OF SIMPLE HARMONIC MOTION

BASIC KINEMATIC PARAMETERS:

- displacement - position with respect to equilibrium

$$
x = A\cos(\omega \cdot t + \varphi)
$$

- velocity - time dep. variation x

$$
v = \frac{dx}{dt} = -A \cdot \omega \cdot \sin(\omega \cdot t + \varphi)
$$

- acceleration - time dep. variation of

$$
a=\frac{dv}{dt}=\frac{d^2x}{dt^2}=-A\cdot\omega^2\cdot\cos(\omega\cdot t+\varphi)=-\omega^2\cdot x
$$

- differential equation of harmonic oscillator

CAUSE OF VIBRATION

Restoring force - cause of periodical oscillations of mass (material point) with respect to constant equilibrium

$$
F = m \cdot a = m \frac{d^2 x}{dt^2} = -k \cdot x
$$

where: \bm{k} - elastic constant <code>- driving force because for \bm{x} =1 \bm{k} = $|\bm{F}|$ </code>

After transformation

$$
m\frac{d^2x}{dt^2}+k\cdot x=0
$$

- differential equation of simple harmonic (free) vibrations having simplest solution function (displacement)

$$
F = m \cdot a = m \frac{d \lambda}{dt^2} = -k \cdot x
$$

where: k - elastic constant - driving force because for $x=1$ $k = |F|$
After transformation $m \frac{d^2 x}{dt^2} + k \cdot x = 0$
- differential equation of simple harmonic (free) vibrations
having simplest solution function (displacement)
 $x = A \cos(\omega_o \cdot t + \varphi)$
at free vibration frequency: $\omega_o = \sqrt{\frac{k}{m}}$ and/or period $T_o = 2\pi \sqrt{\frac{m}{k}}$

EXAMPLE:

- **- simple (mathematical) pendulum**
- **Periodical vibrations (oscillations) of mass** *m* **on lightweight string of length** *l* **along circle with respect to equilibrium position**

- after deflection

restoring force which cause of periodical oscillations of mass (material point) on lightweight with respect to constant equilibrium - gravitational force (?)

- simple (mathematical) pendulum

Restoring force of simple pendulum - tangential component of gravitational force

$$
\boldsymbol{F_s} = \boldsymbol{m} \cdot \boldsymbol{g}_{\perp} = -\boldsymbol{m} \cdot \boldsymbol{g} \cdot \boldsymbol{\sin \varphi}
$$

Only for small angle up to 7

$$
\sin \varphi \approx \text{tg}\varphi = \frac{s}{L}
$$

thus acceleration of simple pendulum

$$
F_s = m \cdot g_{\perp} = -m \cdot g \cdot \sin \varphi
$$

\nly for small angle up to 7°
\n
$$
\sin \varphi \approx t g \varphi = \frac{s}{L}
$$

\n
$$
a_s = \frac{d^2 s}{dt^2} = -g \cdot \frac{s}{L} = -\omega^2 \cdot s
$$

\n
$$
\text{differential equation of simple pendulum}
$$
\noscillation frequency: $\omega_o = \sqrt{\frac{k}{L}}$ and/or period

- differential equation of simple pendulum

 $\omega_{\rm o} =$

m

k

ENERGY

Two forms of mechanical energy of oscillating mass (material point): potential and kinetic energy kinetic energy

For harmonic oscillator - displacement of material point on spring from equilibrium position

Mechanical work done by external force for displacement *x* **against elastic force of spring - potential energy of spring**

$$
W = \int_{0}^{x} F(x) dx = -k \int_{0}^{x} x dx = \frac{1}{2} kx^{2} = \frac{1}{2} kA^{2} \cos^{2}(\omega t + \varphi) = E_{p}
$$

transforms on kinetic energy causes return to equilibrium state

$$
E_k = \frac{1}{2}mv^2 = \frac{1}{2}m(\frac{dx}{dt})^2 = \frac{1}{2}mA^2 \sin^2(\omega t + \varphi)
$$

ENERGY

Total mechanical energy of harmonic oscillator

$$
E = E_p + E_k = \frac{1}{2}kx^2 + \frac{1}{2}mv^2 = \frac{1}{2}kx^2 + \frac{1}{2}m(\frac{dx}{dt})^2
$$

After substitution

$$
E=\frac{1}{2}k\cdot A^2\cos^2(\omega t+\varphi)+\frac{1}{2}m\cdot\omega^2A^2\sin^2(\omega t+\varphi)
$$

Because $\boldsymbol{k} = \boldsymbol{m}\boldsymbol{\omega}^2$

$$
E = E_p + E_k = \frac{1}{2}kx^2 + \frac{1}{2}mv^2 = \frac{1}{2}kx^2 + \frac{1}{2}m(\frac{dx}{dt})^2
$$

After substitution

$$
E = \frac{1}{2}k \cdot A^2 \cos^2(\omega t + \varphi) + \frac{1}{2}m \cdot \omega^2 A^2 \sin^2(\omega t + \varphi)
$$

Because
$$
k = m\omega^2
$$

$$
E = \frac{1}{2}m\omega^2 A^2 \cos^2(\omega t + \varphi) + \frac{1}{2}m\omega^2 A^2 \sin^2(\omega t + \varphi) = \frac{1}{2}m\omega^2 A^2
$$

For isolated simple harmonic motion exchange
of potential energy on kinetic energy, and inversely
total mechanical energy remains constant -
conservation principle of mechanical energy !

For isolated simple harmonic motion exchange of potential energy on kinetic energy, and inversely

- total mechanical energy remains constant -

NATURE

Simple harmonic oscillations under influence of elastic force

$$
F = m \cdot a = m \frac{d^2x}{dt^2} = -k \cdot x
$$

can be damped by force related to medium resistance (internal friction)

- **- decay of oscillatory motion**
-

Only for small velocity damping force

$$
F_d = -b \cdot v = -b \cdot \frac{dx}{dt}
$$

where: *b* **- coefficient of medium resistance (internal friction)**

According to II dynamics principle a net force of damped oscillations

$$
m\frac{dx^2}{dt^2} + k \cdot x + b \cdot v = 0
$$

- differential equation of damped oscillatory motion

having simplest solution function (displacement) at conditions:

- it reduces to simple oscillations without damping, when $b \rightarrow 0$
- it exhibits amplitude reducing in time with damping, when $b \neq 0$ **in form** *b*

$$
x = e^{-\frac{b}{2m}t} \cdot A_o \cdot \cos(\omega \cdot t + \varphi) = e^{-\beta t} \cdot A_o \cdot \cos(\omega \cdot t + \varphi)
$$

where: $\bm{\omega}$ $=$ $\sqrt{{\bm{\omega}}_{\bm{o}}^2-{\bm{b}}^2}$ / $\bm{4m}^2$ $\,$ - angular frequency of damped oscillations

$$
\beta = \frac{b}{2m}
$$
 - damping coefficient (vibrations decay c.)

Displacement *x(t)* **in damped oscillations depends on absolute value of**

$$
\omega = \sqrt{\omega_o^2 - b^2 / 4m^2}
$$

3 boundary conditions:

Slow returning of oscillating point to equilibrium state at

- angular frequency
$$
\omega = \sqrt{\omega_o^2 - b^2 / 4m^2} = \sqrt{\omega_o^2 - \beta^2} \prec \omega_o
$$

- amplitude *o t 2m b* $A = A_o \cdot e^{-\frac{b}{2m}t} = A_o \cdot e^{-\beta t}$ $=$ $A_{\alpha} \cdot e^{-2m} = A_{\alpha} \cdot$

Final effect: with additional simplification - almost periodic oscillations *^t*

For weak damping after proper time corresponding to period *T* **amplitude of damped oscillatory motion**

$$
A_1 = A_o \cdot e^{-\beta t}
$$

After time related to period

$$
t=n\cdot T
$$

it reaches a form

$$
A_n = A_o \cdot e^{-n \cdot \beta \cdot T} = A_o \cdot e^{-n \cdot A}
$$

where:

or - logarithmic decrement of damping $\boldsymbol{\Lambda} = \boldsymbol{\beta} \cdot \boldsymbol{T}$ *n 1 n A A l* = *ln* $\ddot{}$

Final effect:

returns of oscillating point to equlibrium without its crossing (line) – aperiodic function of decay

$$
x = A_0 e^{-\beta t} (1 + \beta \cdot t)
$$

Direct comparison of undamped and damped vibration of different damping mechanism

undamped damped for various β=r

DAMPED AND FORCED OSCILLATORY MOTION

Damped oscillatory motion after decay as a result of damping

can be restored to previous harmonic oscillations by external input force

DAMPED AND FORCED OSCILLATORY MOTION

According to II Newton's law a net force of damped and then forced oscillations

$$
F_f = F_o \cdot \cos(\Omega \cdot t)
$$

Thus

$$
m\frac{dx^2}{dt^2} + b\frac{dx}{dt} + k \cdot x = F_0 \cos(\Omega \cdot t)
$$

or

$$
\frac{dx^2}{dt^2} + 2\beta \frac{dx}{dt} + \omega_o^2 \cdot x = B \cdot \cos(\Omega \cdot t)
$$

- differential equation of damped oscillatory motion having solution (displacement) in form of periodic function

$$
F_f = F_o \cdot \cos(\Omega \cdot t)
$$

thus

$$
m \frac{dx^2}{dt^2} + b \frac{dx}{dt} + k \cdot x = F_o \cos(\Omega \cdot t)
$$

or

$$
\frac{dx^2}{dt^2} + 2\beta \frac{dx}{dt} + \omega_o^2 \cdot x = B \cdot \cos(\Omega \cdot t)
$$

differential equation of damped oscillatory motion
having solution (displacement) in form of periodic function

$$
x = A \cdot \cos(\Omega \cdot t - \Phi)
$$

$$
A = \frac{B}{\sqrt{(\omega_o^2 - \Omega^2) + 4\beta^2 \Omega^2}} \quad \text{- amplitude}
$$

$$
t g \Phi = \frac{2\beta \cdot \Omega}{\omega_o^2 - \Omega^2} \quad \text{- phase}
$$

DAMPED AND FORCED OSCILLATORY MOTION

Special case: absence of damping $\beta = 0$

Amplitude

$$
A = \frac{F_o}{|m(\omega_o^2 - \Omega^2)|}
$$

When $\omega_{\mathsf{o}} \Rightarrow \Omega$

Amplitude $A \implies \infty$

General case: with damping $\beta \neq 0$

Amplitude:

$$
A=\frac{B}{\sqrt{(\omega_o^2-\Omega^2)+4\beta^2\Omega^2}}
$$

At particular ω and weak damping (small β) **amplitude of forced oscillations reaches a maximum - effect of resonance**

COMPLEX OSCILLATORY MOTION

NATURE

Real oscillations: superposition of different component oscillations

Only possible description - every oscillation treated as superposition of linear harmonic oscillations

$$
x_n = A_n \cdot \cos(\omega_n t + \varphi_n)
$$

Two boundary cases:

- **- parallel oscillations**
- \overline{a} **perpendicular oscllations**

Superposition of linear harmonic oscillations in one direction – 3 boundary cases:

- at identical angular frequency:

$$
\omega_1 = \omega_2 = \omega = \text{const}
$$

Net displacement

$$
x = A \cdot cos(\omega t + \varphi)
$$

When

$$
A = \sqrt{A_1^2 + A_2^2 + 2A_1 \cdot A_2 \cdot \cos(\varphi_2 - \varphi_1)}
$$

Net phase

$$
tg\varphi = \frac{A_1 \cdot \sin \varphi_1 + A_2 \cdot \sin \varphi_2}{A_1 \cdot \cos \varphi_1 + A_2 \cdot \cos \varphi_2}
$$

Two boundary cases:

- **- phase coincidence - amplitude summation**
- **- phase non-coincidence - amplitude substraction**

- at close angular frequency: $\omega \pm \Delta \omega$

Net displacement

$$
x = 2A \cdot \cos \omega \cdot t \cdot \cos \Delta \omega \cdot t
$$

Specific case when

 $\Delta \omega$ \prec 16Hz

- **i.e. in the audible region**
- **-** *effect of beat*

- at different angular frequency: anharmonic oscillations

Only possible solution for arythmetic sequence:

Net displacement

$$
x=\sum_{n=1}^{\infty}A_n\cos(n\omega t+\varphi)
$$

Component oscillations: first, second, third, ... harmonics

Important inverse problem:

decomposition of arbitrary periodic oscillations for single harmonic

FOURIER ANALYSIS

Two most common examples:

- pulse type oscillations

- square type oscillations

SUPERPOSITION

Simplified case: two pulses

- **- different amplitude**
- **- different frequency**
- **- oposite direction**

Two possible effects:

- **- convolution of two component pulses (oscillations) to complex form**
- **- deconvolution of complex form into two component pulses (oscillations)**

PERPENDICULAR OSCILLATORY MOTION

- **Superposition of at least two linear harmonic perpendicular oscillations along two perpendicular** *x* **and** *y* **axes**
- **Net oscillations - curve at xy plane - Lissajous figures (curves)**
- **Two boundary cases:**
- **for identical angular frequency:**

PERPENDICULAR OSCILLATORY MOTION

- for different angular frequencies: superposition of two components

$$
x = A_1 \cdot \cos(n_1 \cdot \omega t + \varphi_1) \qquad y = A_2 \cdot \cos(n_2 \cdot \omega t + \varphi_2)
$$

Net oscillations: Lissajous figures (curves)

Most popular case: electric oscillations

Final shape depends on:

- angular frequency ratio

$$
\omega_x : \omega_y
$$

- phase shift

$$
\varDelta\varphi=\varphi_2-\varphi_1
$$

PERPENDICULAR OSCILLATORY MOTION

- **- at different angular frequencies: superposition of two components**
- **Lissajous figures at different angular frequency ratio** ω_x *:* ω_y

