WAVES PROPAGATION

NATURE

Propagation (travelling) of disturbance in elastic media:

- **gas (air)**
- **liquid (water)**
- **solid (crystal)**

CAUSE

Common effects:

- **each particle of medium "pass a message on" to its neighbour(s)**
- **- transmition of energy of particles (oscillators) via coupling in elastic media.**

GENERAL CLASSIFICATION

3 criteria: medium and source, boundary conditions, shape and angle

MEDIUM AND SOURCE

mechanical waves - a disturbance of elastic medium:

 electromagnetic waves - a variation of intensity of electric E and magnetic H fields

GEOMETRICAL BOUNDARY CONDITIONS OF PROPAGATION

plane waves

 disturbance in one dimension the wavefronts (surfaces of the constant phase) are parallel planes

spherical waves disturbance in 3 dimensions from a point source - wavefronts concentric and spherical special case: waves at water surface from a point source -

 the concentric wavefronts.

- **ANGLE: DISTURBANCE – DIRECTION OF PROPAGATION**
- **longitudinal waves**
- **Oscillation (disturbance) II to propagation (velocity) - arbitrary media**
- **EXAMPLES: - string) <u>Anno () Anno 1</u>**
- **Travelling of compression along its length**
	- **sound in air**

Compression and expansion – periodic changes of air density

ANGLE: DISTURBANCE – DIRECTION OF PROPAGATION

transverse waves

Oscillation (disturbance) to propagation (velocity) - liquid, solid

EXAMPLES:

 - rubber hose

Travelling of disturbance along its length - harmonic wave at c.

wave pulse at disturbed surface

Travelling of disturbance along its length

- harmonic wave at c.

WAVE PROPAGATION IN ONE DIMENSION

Disturbance (wave) propagation along one direction *x*

For constant shape the wave function has a form

$$
\Psi = \Psi(x',t) = \Psi(x \pm v \cdot t)
$$

Twice differentation with respect to *x* **and then with respect to** *t* **V** = $\Psi(x',t) = \Psi(x, t')$

Twice differentation with respect to x and then
 $\frac{\partial^2 \Psi}{\partial x^2} = \frac{1}{v^2} \cdot \frac{\partial^2 \Psi}{\partial t^2}$

Differential equation of one dimensional wave

$$
\frac{\partial^2 \Psi}{\partial x^2} = \frac{1}{v^2} \cdot \frac{\partial^2 \Psi}{\partial t^2}
$$

WAVE PROPAGATION IN ONE DIMENSION

Simplest case: plane wave propagation along one direction *x* **harmonic wave function**

 $\mathbf{Y}(x,t) = \mathbf{y}(x,t) = A\cos(\omega t \pm \varphi) = A\cos(\omega t \pm kx)$

where:

Wave function of one dimensional wave

$$
\Psi(x,t) = A\cos(\omega t \pm \varphi) = A\cos 2\pi(\frac{t}{T} \pm \frac{x}{\lambda}) = A\cos \frac{2\pi}{T}(t \pm \frac{x}{\nu})
$$

WAVE PROPAGATION AT INTERFACES

Wave travelling in a medium affected at interface:

- **air – liquid**
- **air – solid**
- **liquid – solid**

Primary description - Huyghens' principle: *each point of wavefront considered as point source responsible for subsequent wave progress of wave*

Wavefront is produced along envelope which is generated by elemental waves – shape of source determines the contour of wave

Reflection

- wave propagation \perp to interface of different media of various velocity $\bm{\nu}$ **reflection partial reflection (transmision)**

- wave propagation at angle to interface - variation of wave angles after reflection

Law of wave reflection:

According to Huyghen's principle - at interface angles of wave incidence and reflection are always equal with respect to normal.

Refraction

- **wave propagation in different media exhibiting various velocity**
	- **- effect of refraction at interface**

θ_1 medium 1 $c₁$ medium 2 $c₂$ θ_2

Law of wave refraction:

According to Huyghen's principle angles of wave incidence and refraction (with respect to normal) determined by ratio of velocities in respected media

Superposition

two waves of different velocity and phase in same direction

$$
\Psi(x,t)=\cos\frac{2\pi}{T}(t+\frac{x}{\nu})
$$

two waves of different velocity and phase in opposite direction

$$
\Psi(x,t) = \cos \frac{2\pi}{T} (t + \frac{x}{\nu})
$$

$$
\Psi(x,t) = \cos \frac{2\pi}{T} (t - \frac{x}{\nu})
$$

Superposition

EXTE two waves of identical velocity and phase in opposite direction

$$
\Psi(x,t) = \cos \frac{2\pi}{T} (t - \frac{x}{\nu})
$$

$$
\Psi(x,t) = \cos \frac{2\pi}{T} (t + \frac{x}{\nu})
$$

Net wave function

$$
\Psi(x,t)=2\cos(\frac{2\pi}{\lambda}x)\cos \omega t
$$

Two boundary conditions:

$$
\left[\frac{1}{\sum_{\substack{\textbf{N} \\ \textbf{N} \\ \textbf{N
$$

$$
\cos(\frac{2\pi}{\lambda}x) = 0 \quad \text{thus} \quad \frac{2\pi}{\lambda}x = \pi(n+\frac{1}{2}) \qquad \text{Node}
$$

$$
\cos(\frac{2\pi}{\lambda}x) = \pm 1 \quad \text{thus} \qquad \frac{2\pi}{\lambda}x = \pi \cdot n \qquad \text{Anti-node}
$$

Superposition

- **two waves of close velocity and phase in same direction**
- **Envelope of particular waves modulating amplitude moving with group velocity generates localized wave pocket**
- **Two different velocities:**
- **- phase velocity inside**
- **- group velocity of packet centre**

$$
v_g = \lim_{\Delta k} (\frac{\Delta \omega}{\Delta k}) = \frac{d\omega}{dk} = v + k \frac{dv}{dk}
$$

Diffraction and interference

- **diffraction of one wave at slite(s) of different width**
- **Different boundary effects:**
- **for narrow slit - generation of concentric waves**
- **for wide slit - generation of almost front plane waves**
- **diffraction and interference of two waves from close point slites**
- **General tendency: overlapping of waves Opposite boundary effects:**
- **- phase coincidence - amplification**
- **- phase anti-coincidence - weakening**

NATURE

Elastic longitudinal waves travelling in disturbed air, liquid and solid

In air:

Air disturbance (compression and rarefaction) along direction of wave propagation - periodic changes of air density at constant velocity

Sound:

Sonic impression received by human ear generated by various sources in air as a result of its periodical disturbance.

SOURCES

Every device causes periodic disturbance of air – general classification based on shape and dimension:

LINEAR

 (one dimensional standing waves of nodal and antinodal points)

EXAMPLES:

- string

Transverse oscillations of disturbed air of frequency

$$
f_n=\frac{n}{2}\cdot\frac{\nu}{I}=\frac{n}{2I}\sqrt{\frac{F}{s\rho}}
$$

Along a string – total number of n half-waves:

 n=1 - base frequency; n=2,3,4 ... - harmonic frequency

LINEAR

- air column

After motion of piston (membrane) inside tube shock compression of air -

- periodic changes of air density at constant sound velocity

$$
v = \sqrt{\frac{B}{\rho}}
$$

where: B - volumetric modulus of elasticity

LINEAR

- tuning fork

Fast vibrations of wings - oscillations of air column between wings - generation of harmonic wave of single base acoustic frequency: 435 Hz

Application:

Determination of sound velocity using standing wave resonance

$$
v_{\scriptscriptstyle a} = \lambda_{\scriptscriptstyle sw} \cdot \bm{f}_{\scriptscriptstyle tf} = 2 \bm{d} \cdot \bm{f}_{\scriptscriptstyle tf}
$$

For $f_{\text{tf}} = 435 \text{ Hz}$

standing wave observed at air column length d = 0.38 m

 \bullet **sound** wave velocity in air υ = 330 [m/s]

PLANAR

Two dimensional standing waves of nodal and antinodal lines strongly depends on geometry of supporting points)

EXAMPLES

- circular membrane

Due to impact of membrane supported at different points – generation of first harmonic wave not being total multiple of base frequency

- plate

Due to impact of plate supported at different points – generation of Chladni figures – anharmonic oscillations of various shapes and base frequency dependent on plate's shape

CHARACTERISTICS

Sound: periodic wave described by function of period T

$$
\Psi = \Psi(t+T) = \sum_{n=0}^{\infty} \mathbf{C} \cdot \cos(\omega_n t + \varphi_n)
$$

According to Fourier theorem - sum of convergent ininite series of subsequent harmonic oscillations of angular frequency

$$
\omega_n = n \cdot \omega_o = n \cdot \frac{2\pi}{T}
$$

where: n = 0, 1, 2, 3, ... n

- multiple of base angular frequency $\omega_{\scriptscriptstyle\alpha}$

PARAMETERS

Frequency range: 16 20000 Hz - acoustics Main parameters (quantities) of audible sound:

frequency

 received by human ear as height of sound

PARAMETERS

amplitude

Registered as loudness (volume)

spectrum In audible recognized as timbre

Sound Pressure of Axial **Standing Waves in a Room**

- **Amplitude dependence on frequency in 3 impressions:**
- **tone: impression caused by periodic disturbance line spectrum at chosen frequency - tuning fork**
- **sound: impression caused by anharmonic disturbance line spectrum of various amplitudes and frequency -**
- **- murmur: impression caused by aperiodic continuos disturbance strong murmur of increasing amplitude: rumble, crash**

INTENSITY

Sound as impression - different sound intensity:

 physical (absolute) intensity

Average energy of sound travelling at velocity via section S in time t

$$
I=\frac{E}{S\cdot t}
$$

Average energy of sound wave

$$
E = \frac{1}{2} m A^2 \omega^2 = \frac{1}{2} (\rho V) A^2 (2 \pi f)^2 = 2 \pi^2 \rho \cdot A^2 \cdot f^2 \cdot S \cdot \omega \cdot t
$$

Physical (absolute) sound intensity

$$
I=\frac{E}{S\cdot t}=2\pi^2\cdot\rho\cdot f^2\cdot A^2\cdot\upsilon
$$

Unit: absolute [W/m²]

INTENSITY

 subjective intensity

Average energy of sound received by human ear as an impresion

Because of different individual sensitivity of physical sound intensity – relative parameter in logarythmic scale – sound impression level - Weber-Ferchner law

$$
\beta = 10 \log \frac{1}{I_{o}} = 10 \log \frac{1}{10^{-12}}
$$

where: I^o - audible threshold of physical intensity for tone at 1kHz

Relative unit: decibel [dB]

Example: for $I = 1000 I_0 - 1000 I_1 + 1000 I_2 + 1000 I_1 + 1000 I_2 + 1000 I_1 + 1000 I_2 + 1000 I_$

INTENSITY

 subjective intensity

Because of strong dependence of sound received by human ear on frequency f - additional relative parameter: perceived noise level

Relative unit: phon - sound impression level [dB] of tone at f = 1 [kHz]

INTENSITY

subjective intensity

Comparison of perceived noise level of various sound sources [phons]

DOPPLER EFFECT

Change of length (frequency) of sound wave received by observer during variation of distance: source-observer - two boundary cases: example

sound source in motion

Generation of sound of velocity, length and frequence - two possibilities: observer in rest approaches or dismisses

sound received by observer shorter in λ - higher in f

observer:

$$
f' = \frac{\nu}{\lambda'} = \frac{\nu}{(\nu - \nu_s)/f} = f(\frac{\nu}{\nu - \nu_s})
$$

for motion in opposite direction – opposite manner and relation

$$
f' = \frac{\nu}{\lambda'} = \frac{\nu}{(\nu + \nu_s)/f} = f(\frac{\nu}{\nu + \nu_s})
$$