ENERGY IN NATURE

ENERGY IN NATURE

Common energy source for life on Earth – Sun radiation

ENERGY TRANSFER IN NATURE

Main form of energy inside all natural systems – internal energy U

Internal energy in combination with heat transfer(s) and mechanical work(s) done - base for phenomenological thermodynamics laws.

ENERGY EXCHANGE IN NATURE

Common energy transfer – mechanical to thermal

- Joule experiment (1845)

 heating of water during mixing of water inside an isolated container by paddle wheel - increasing of T of water on the cost of decreasing of potential energy

 $Q \cdot \Delta h = c_w \cdot m_w \cdot \Delta T$

$$
\Delta T = \frac{Q \cdot \Delta h}{c_w \cdot m_w}
$$

- fast crumble of fruits inside blender heating of fruits during mixing - increasing of T of crumbled fruits

- mutual friction of bodies (hands) heating of abraded surfaces - increasing of their T

ENERGY EXCHANGE IN NATURE

Common thermal related effects

ENERGY IN GAS SYSTEM

Energy of gas as the thermodynamic system - two basic forms:

 kinetics - result of translational, rotational and oscillatory motions potential - result of mutual interactions of particles (real gas)

Primary energy of every thermodynamic system: internal energy

$$
U = E_k + E_p = const
$$

When internal energy U is constant - isolated thermodynamic system, i.e. without exchange of energy in contact with surroundings.

Complete description of every thermodynamic system via:

- parameters of state: pressure p, volume V, temperature T, mass m

- functions of state and/or process:

 internal energy U, heat of process (transition) Q, mechanical work W, enthalpy H and entrophy S

Such approach: domain of phenomenological thermodynamics

COMPLETE THERMODYNAMIC PROCESS

Any change of gas internal energy U as a result (mostly together) of:

- **heat energy consumed (or gave up) by system (exchange of heat energy Q with surroundings by heating or cooling)**
- **- mechanical work** *W* **performed by gas for the surroundings (against external force F) or done on gas system by external force F**

Commonly accepted nonlinear changes of energetic quantities - in mathematical analysis infinitesimal changes should be considered like

$$
dU = \delta Q + \delta W
$$

where:

dU - complete differential (as function of state)

Q and W - incomplete differential functions of process

- principle of conservation energy in isolated thermodynamic systems - First law of thermodynamics (Claussius - 1850)

FIRST LAW OF THERMODYNAMICS

- **First primary function: internal energy**
- **For deal gas - sum of kinetic energy of all molecules** *N*

For n = 1 mole
$$
U = N_A \cdot \overline{E}_k = \frac{3}{2} N_A \cdot k \cdot T = \frac{3}{2} R \cdot T
$$

For an isochoric process (*V* **= const) – no variation of volume -** *dV = 0* **Mechanical work done in an isochoric process
** $dW = pdV = 0$ **thus** $dU = dQ + dW = dQ + p \cdot dV = dQ$

$$
dW = pdV = 0 \quad \text{thus} \quad dU = dQ + dW = dQ + p \cdot dV = dQ
$$

Finally $R \cdot dT$ 2 i $dU = C_V \cdot dT = \frac{i}{2} R \cdot$

where: $C_{_{V}}\,$ - heat capacity at constant volume

Every change of internal energy is only determined by the variation of temperature *dT* **and is not dependent on type of thermodynamic process** For n = 1 mole $U = N_A \cdot E_k = \frac{1}{2} N_A \cdot k \cdot T = \frac{1}{2} R \cdot T$

For an isochoric process ($V = \text{const}$) – no variation of

Mechanical work done in an isochoric process
 $dW = pdV = 0$ thus $dU = dQ + dW = dC$

Finally $dU = C_V \cdot dT = \frac{i}{2} R \cdot dT$

FIRST LAW OF THERMODYNAMICS

Second primary function - mechanical work of pressure

Infinitely small value of mechanical work done by external force *F* **after shift of piston of section** *S* **by distance** *dx* dX
 $dW = F \cdot dx = p \cdot A \cdot dx = p \cdot dV$

$$
dW = F \cdot dx = p \cdot A \cdot dx = p \cdot dV
$$

(-) under influence of external force (dV<0) (+) when gas performs mechanical work (dV > 0)

Finite value of mechanical work 2 2

$$
W_{12} = \int_{1}^{2} dW = \int_{1}^{2} p \cdot dV
$$

Thus, complete for of I thermodynamics principle

$$
dU=dQ-pdV
$$

In general, mechanical work depends on type of thermodynamic process and energy transfer - mechanical work, as well as heat energy of transition (consumed or gave up by system) - functions of process.

FIRST LAW OF THERMODYNAMICS AND GAS TRANSITIONS

 ISOCHORIC PROCESS

Thermodynamic system: closed gas vessel

V = const, thus dV = 0

Mechanical work of pressure dW=0

I thermodynamics principle

$$
dU = dQ = C_V \cdot dT = \frac{i}{2} R \cdot dT
$$

Heat energy delivered (picked up) in (from) gas system causes increase (decrease) of its internal energy.

FIRST LAW OF THERMODYNAMICS AND GAS TRANSITIONS

 ISOTHERMIC PROCESS

Thermodynamic system: closed gas vessel on thermostat

- $T = \text{const}, \text{ thus } dT = 0$
- **First law of thermodynamics**

$$
dU = dQ + dW = 0
$$
 thus $dQ = dW = pdV$

Heat energy delivered (picked up) exchanges on mechanical work of gas compression/expansion – variation of gas volume as result of mechanical

work done by external forces
 $W_{12} = \int dW = \int p \cdot dV = R \cdot T \int \frac{dV}{V} = R \cdot T \ln \frac{V_1}{V_2}$ **work done by external forces**

al forces
\n
$$
W_{12} = \int_{1}^{2} dW = \int_{1}^{2} p \cdot dV = R \cdot T \int_{1}^{2} \frac{dV}{V} = R \cdot T \ln \frac{V_1}{V_2}
$$

Two possibilities:

- at compression *(dV < 0)* **- mechanical work done (+) by external force**

- at expansion *(dV > 0)* **- mechanical work performed (-) on expence of delivered heat energy.**

FIRST LAW OF THERMODYNAMICS AND GAS TRANSITIONS

 ISOBARIC PROCESS

Thermodynamic system: gas vessel with motionless piston

p = const

First law of thermodynamics

$$
aw of thermodynamics\n
$$
dU = dQ + dW = C_p \cdot dT - p \cdot dV = C_V \cdot dT
$$
$$

- **Delivered heat energy:**
- **causes increase of internal energy**
- **uses for mechanical work for gas expansion**

$$
W_{12} = \int_{0}^{2} p \cdot dV = p \quad V_2 - V_1
$$

After differentiation of equation of state of ideal gas 1

$$
p\cdot dV = R\cdot dT
$$

Finally

$$
p \cdot dV = R \cdot dT
$$

$$
C_V \cdot dT = C_p \cdot dT - p \cdot dV = C_p \cdot dT - R \cdot dT
$$

where: $\bm{\mathcal{C}}_{\rho}$ - heat capacity at constant pressure.

FIRST LAW OF THERMODYNAMICS AND GAS TRANSITIONS

A complete first law of thermodynamics

Let first law of thermodynamics
the first law of thermodynamics

$$
C_p \cdot dT = C_V \cdot dT + p \cdot dV = C_V \cdot dT + R \cdot dT + C_V + R \cdot dT
$$

After transformation heat capacity at constant pressure

$$
C_p = C_V + R = \frac{i}{2}R + R = \frac{i+2}{2}R
$$

A heat capacity ratio

$$
\frac{C_p}{C_V} = \kappa = \frac{i+2}{2}
$$

Depends on number of degree of freedom *i*

Finally, First law of thermodynamics for isobaric process modynamics for isobaric process
 $dQ = dU + p \cdot dV = d\left(U + pV\right) = dH$

$$
dQ = dU + p \cdot dV = d \quad U + pV = dH
$$

where dH - variation of enthalpy as amount of exchanged heat energy

FIRST LAW OF THERMODYNAMICS AND GAS TRANSITIONS

ADIABATIC PROCESS

Thermodynamic system: isolated gas vessel No heat exchange with surroudings - dQ = 0 All parameters of states like p, V, T const Thus \cdot dT

$$
dU = dW = C_V \cdot d
$$

- **Two possibilities:**
- **- gas performs mechanical work on expence of internal energy change**
- **- mechanical work by external force causes increase of internal energy** $\bm{R}\cdot \bm{T}$ p $\ddot{}$ =

Gas pressure for n = 1 mole of gas $P = \frac{N}{V}$ **First law of thermodynamics** $C_V \cdot dT = p \cdot dV = R \cdot T$

V

After transformation (ordering of the variables)

ordering of the variables)

\n
$$
\frac{R}{C_V} \frac{dV}{V} = \frac{C_p - C_V}{C_V} \frac{dV}{V} = \kappa - 1 \frac{dV}{V} = \frac{dT}{T}
$$

FIRST LAW OF THERMODYNAMICS AND GAS TRANSITIONS

1

 $d\overline{T}$

 ADIABATIC PROCESS

After double-sided integration $(K-1)\int \frac{dV}{dx} = \int$ 2 2 $\frac{1}{1}$ V $\frac{1}{1}$ T V dV $(K-1)$

one can obtain $(x - 1) \ln \frac{v}{1} =$

Thus $T_2 \cdot V_2^{\kappa-1} = T_4 \cdot V_4^{\kappa-1} = T \cdot V^{\kappa-1} = const$ 1 **' '** 1 -1 $\mathcal{L}_2 \cdot V_2^{\kappa -1} = \mathcal{T}_1 \cdot V_1^{\kappa -1} = \mathcal{T} \cdot V^{\kappa -1} =$

1

 $V_{\mathcal{A}}$

V

2

After final transformation using Poisson equations for adiabatic process c*onst* or $\boldsymbol{\mathcal{T}}$ p -1 $\frac{1}{\kappa}$ = κ $\rho \cdot \mathsf{V}^\kappa$ = const

1

 \mathcal{T}_1

 $\boldsymbol{\mathcal{T}}$

ln

2

Using equation of state of ideal gas - another forms

$$
dU = C_V \cdot dT = p \cdot dV = dW
$$

In adiabatic expansion gas performs mechanical work on expence of decrease of internal energy

Common effects:

- **heat exchange in atmosphere**
- **thermodynamics cycles**

HEAT EXCHANGE IN ATMOSPHERE

Air pressure above Earth surface almost adiabatical **decrease of result of small thermal conductivity Exponential decrease of gas pressure on** *h*

$$
dp = \rho \cdot g \cdot dh = \frac{M \cdot p}{R \cdot T} g \cdot dh
$$

Using one of the Poisson's equations $T \cdot V^{\kappa-1} = const$

and equation of state of ideal gas for n = 1 mole one can obtain const $\bm{\rho}$ κ $\boldsymbol{\mathcal{T}}$ $\frac{1}{k-1} =$

After finding logarithm for both sides and their differentiation
\n
$$
\frac{dT}{T} = -\frac{\kappa - 1}{\kappa} \frac{dp}{p}
$$
\nor\n
$$
\frac{dT}{dh} = \frac{\kappa - 1}{\kappa} \frac{g \cdot M}{R} = K = 10[K / km]
$$

Decrease of temperature in air atmosphere by 10 [K] with increasing of height over sea level by 1 [km] – very good correlation with natural data

THERMODYNAMIC CYCLES

In any thermodynamic process mechanical work done by pressure

$$
W_{12} = \int_{1}^{2} dW = \int_{1}^{2} p \cdot dV
$$

corresponds to area under p-V curve for proper process

In the cyclic process (closed path) net mechanical work
done by pressure in one cycle

$$
W_{cp} = \oint dW = \oint pdV = \int_{A}^{B} p \cdot dV + \int_{B}^{A} p \cdot dV = \int_{A}^{B} p \cdot dV - \int_{B}^{A} p \cdot dV = 0
$$
path1 path2 path2 path2

corresponds to area within closed cycle on p-V diagram

CLOSED CARNOT CYCLE

First important practical closed cyclic process - Carnot cycle Four succesive stages of an ideal gas

CARNOT CYCLE

Heat energy absorbed by gas from higher temperature reservoir - expense of mechanical work done in isothermal expansion at temperature T^h

-1

$$
|Q_h| = k \cdot T_h \cdot \ln \frac{V_B}{V_A}
$$

Heat energy deposited at lower temperature T^c

$$
|Q_c| = k \cdot T_c \cdot ln \frac{V_C}{V_D}
$$

Equations of state for two adiabatic processes:

process B - C -1 c $\lq C$ $T_h \cdot V_B^{k-1} = T_c \cdot V_C^{k}$

process D - A h A $T_c \cdot V_D^{\kappa-1} = T_h \cdot V_A^{\kappa}$

c

 $\bm{\mathcal{T}}$

 $\frac{D}{L}$)^{K-1} = $\frac{Ih}{T}$ = $\frac{VC}{V}$)^K

-1 h

B

 $\frac{V_D}{V}$ $x^{-1} = \frac{T_h}{T}$ $\frac{V_C}{V}$ x^{k}

 $J^{\kappa-1} = \frac{T}{T}$

V

A

V

CARNOT CYCLE

After transformation

c

 Q

then $\frac{v_D}{v} = \frac{v_C}{v}$ and B $\bm{\mathit{C}}$ A D V V V V = h A B h h $\bm{\mathcal{T}}$ V V $k\cdot T$. \cdot ln Q = \cdot \mathcal{T}_h \cdot \overline{a}

c

k \cdot T $_{\circ} \cdot$ In

 \cdot \mathcal{T}_c \cdot

thus $\left|\frac{a_n}{Q_c}\right| = \frac{A}{kT} \cdot \frac{A}{R} = \frac{B}{T_c}$ and D A V V = h h $\boldsymbol{\mathcal{T}}$ \boldsymbol{Q}

 $\boldsymbol{\varrho}_\text{\tiny H}$ $\boldsymbol{\varrho}_\mathrm{c}$ $T_{\rm H}$ $T_{\rm C}$ W Hot source

Cold sink

- general characteristics of all reversible cycles.

D

V

V

 $\bm{\mathit{C}}$

 $\bm{\mathcal{T}}$

Additional transformation

c

 $\bm{\mathcal{T}}$

=

 Q

-1

B

V

(

 \boldsymbol{C}

V

V

 $\bm{\mathit{C}}$

General behaviour of all reversible cycles – efficiency always < 1! ideal motion without lose of energy is impossible - I type perpetum mobile - model device (system) once started working without any external energy; true in mechanics-Newton's pendulum vibrations

Most common application of Carnot cycle: heat engine and heat pump

HEAT ENGINE

IDEA:

net mechanical work *W* **is done by the system: heat energy** *Qhot* **is taken** from the heat source (heating) at temperature \mathcal{T}_H and then deposited as Q_{cold} in the low temperature reservoir (cooling) at temperature T_c

According to first law of thermodynamics internal energy becomes unchanged, thus

 $W = Q_h - Q_c$

HEAT PUMP - REFRIGENATOR

IDEA:

reversed cyclic process: mechanical work is put into system and then heat energy is taken from low temperature reservoir and then deposited in high-temperature reservoir

SECOND LAW OF THERMODYNAMICS

Any reversible process can be recognized as comprising of very large thin Carnot cycles - for any small cycle

$$
\left|\frac{Q_h}{T_h}\right| = \left|\frac{Q_c}{T_c}\right|
$$

For complete reversible process

$$
\sum_i \frac{Q_i}{T_i} = 0
$$

When $Q \rightarrow 0$

Carnot cycle becomes infinitely small and heat energy variation is independent on path between A and B on *p***-***V*

$$
\oint \frac{dQ}{\mathcal{T}} = 0
$$

For ireversible thermodynamic process between two boundary points

$$
dS = \int_{A}^{B} \frac{dQ}{T}
$$

$$
A S = \int_{A}^{B} \frac{dQ}{T} = S_{B} - S_{A}
$$

- Differential and integral second law of thermodynamics, respectively whereas differential first law of thermodynamic \qquad $T \cdot dS = dU + p \cdot dV$

SECOND LAW OF THERMODYNAMICS

 \boldsymbol{C}

 $=\mathcal{C}_{p}\frac{d\mathcal{L}}{\tau}\cdot$

dQ

For the exchanged heat energy of arbitrary process

COND LAW OF THERMODYNAMICS

the exchanged heat energy of arbitrary process
 $dQ = dU + p \cdot dV = d \quad U + pV$) = $dH - V \cdot dp = c_p \cdot dT - V \cdot dp$

Taking into account equation of state $\rho \cdot V = R \cdot T$
 $dQ = dH - V \cdot dp = c_p \cdot dT - RT$

equation of state
$$
p \cdot V = R \cdot T
$$

\n $dQ = dH - V \cdot dp = c_p \cdot dT - RT \frac{dp}{p}$
\n $dT - pdp$

Dividing by T

p $\boldsymbol{\mathcal{T}}$ $\boldsymbol{\mathcal{T}}$

R

After integration between two boundary states, respectively
\n
$$
\Delta S = S_2 - S_1 = c_p \cdot \ln \frac{T_2}{T_1} - R \cdot \ln \frac{p_2}{p_1}
$$

For ireversible process between intital (1) and final (2) states, respectively

$$
\Delta S = S_2 - S_1 = S_f - S_i > 0
$$

Second law of thermodynamics - law of entropy (Claussius – 1850)

Identifies the direction of a process – heat can only spontaneously transfer from Taking into account equation of state $p \cdot V = R \cdot T$
 $dQ = dH - V \cdot dp = c_p \cdot dT - R$

Dividing by T $\frac{dQ}{T} = c_p \frac{dT}{T} \cdot R \frac{dp}{p}$

After integration between two boundary states, resp
 $\Delta S = S_2 - S_1 = c_p \cdot ln \frac{T_2}{T_1} - R \cdot ln \frac{p_2}{p_1}$

F

SECOND LAW OF THERMODYNAMICS

ENTROPY - measure of degree of randomness of energy in a system measure of dissorder of matter

During transition from orderded form (solid) to disordered forms (liquid) entropy always increases

SECOND LAW OF THERMODYNAMICS

ENTROPY - measure of degree of randomness of energy in a system measure of dissorder of matter - recognition between the processes

For reversible processes $S_f = S_i$ For irreversible process

 $S_f > S_i$

Free expansion - istothermal process Adiabatic expansion

Change of entropy for isothermal process

Gass ocupies left volume

Gas expands adiabatically and irreversibly **Energy is constant Entropy is maximized**

THIRD LAW OF THERMODYNAMICS

ENTROPY

For large system statistical-mechanics definition of entropy

Where:

$$
S = k \cdot lnW
$$

- **k Boltzmann constant**
- **W - number of microstates consistent with macroscopic configuration**
- **- Third law of thermodynamics (Lewis, Randall – 1923)**

A "perfect" crystal has flawless alignment of all its particle - at absolute zero temperature particles have minimum energy - one microstate entropy

$$
S_{T=\theta K}=k\cdot ln 1=0
$$

ENTROPY IN SURROUNDINGS

The total (variation) of entropy of natural systems in surroundings

$$
\Delta S_{total} = \Delta S_{system} + \Delta S_{surroundigs} > 0
$$

In any spotaneous processes the total entropy is always positive - heat transfer from hot container to cold surroundings is only possible

THERMODYNAMICS LAWS - SUMMARY - LIMITATIONS

Zero Law (Equilibrium principle)

- Two bodies in thermal equilibrium are at same T

First Law (Energy conservation principle)

Energy is conserved, cannot be created or destroyed; its form can only be converted; however it:

- **- does not help to predict the certain process is possible or not, and its direction**
- **- does not provide and specify sufficient condition to process take place**

Second Law (Entropy principle)

Energies can flow equilibrate, their forms changed with loss of usable ones - waste energy cause disorder - recognition of reversible and irreversible processes

Third Law (Temperature principle)

"Driving force" for equlibration uniquely defined

