Branch: IS (Makro) Course: Physics Teaching form: Classes Semester: 2 Academic Year: 2018/2019

PRACTICE PROBLEMS - SET 5 PHASE TRANSITIONS, GAS PROPERTIES AND LAWS OF THERMODYNAMICS

Problem #1.

You are served tea of volume $V_t = 200 \text{ ml}$ in a glass of volume $V_g = 250 \text{ ml}$ and mass $m_g = 25 \text{ g}$ at the temperature $t_g = 55 \text{ °C}$. In order to decrease a temperature of tea in glass the several ice cubes each of mass $m_{ic} = 15 \text{ g}$ at a temperature $t_{ic} = -10^{\circ} \text{ C}$ were dropped into the glass. How many ice cubes would you use to reach the tea temperature $t_t = 30^{\circ} \text{ C}$? Take the specific heat: $c_{glass} = 840 \text{ J/kg} \cdot \text{K}$, $c_{steam} = 2.0 \text{ kJ/kg} \cdot \text{K}$, $c_{water} = 4.2 \text{ kJ/kg} \cdot \text{K}$, $c_{ice} = 2.0 \text{ kJ/kg} \cdot \text{K}$, and the respective latent heats of ice fusion $L_{ice} = 334 \text{ kJ/kg}$ and water porization of water $L_{water} = 2260 \text{ kJ/kg}$. Neglect the effects of thermal conduction between glass and ambience and tea vaporization.

Problem #2.

A block of metal of mass $m_m = 0.5 \ kg$ and an initial temperature $t_m = 30 \ ^{\circ}C$ is dropped into a container holding of water of mass $m_w = 1.12 \ kg$ at temperature $t_w = 20 \ ^{\circ}C$. If the final temperature of block-water system is $t_f = 20.4 \ ^{\circ}C$, what is the specific heat of the metal? Take the specific heat of water $c_{water} = 4186 \ J/kg \ ^{\circ}C$. Assume that the thermal parameters of container can be ignored, and that no heat is exchanged with the surroundings.

Problem #3.

Estimate the number of helium atoms *He*, molecular oxygen O_2 and molecular ammonia NH_3 of mass m = 1 g at room temperature, as well as their average temperature based on kinetic energy at the level of $E_k = 5 \cdot 10^{-21}$ J.

Problem #4.

A molecular oxygen O_2 is placed in a cylinder with a piston that is allowed to move freely. The initial gas state parameters are following: pressure $p_1 = 85 \ kPa$, temperature $t_1 = 12^{\circ}C$, and a volume $V_1 = 0.6 \ L$. Determine its pressure p_2 if the temperature is raised to $t_1 = 30^{\circ} C$ while the volume is fixed, as well as determine its pressure p_3 if its volume is increased to V_2 =1.2 L but the temperature is held as before at $t_1 = 12^{\circ}C$.

Problem #5.

In cylindrical vessel filled with air is closed by the movable piston. After its isobaric heating in temperature range $\Delta T = 300 \div 400 \text{ K}$ the piston was shifted by $\Delta h = 2 \text{ cm}$. What was its primary height *h* before heating?

Problem #6.

Estimate the difference in respective local pressure and temperature between Zakopane Centre (900 m osl) and Świnica peak (2301 m osl) taking both places as the isolated systems (adiabatic spacer) without any undesired and unexpected weather effects like wind Foehn.

Problem #7.

A cubical room of volume $V = 250 \text{ m}^3$ is filled with molecular nitrogen N_2 at atmospheric pressure p = 100 kPaand at room temperature t = 20 °C. Determine the mass of gas in the room? What is an amount of heat needed to increase the temperature in room by $\Delta t = 5 \text{ °C}$ (if the total heat goes into the gas), and what is a respective variation of its internal energy ΔU ? Assume that the heating process is under constant V and p, respectively.

Problem #8.

In the Carnot engine the ratio of temperature of heating source T_h and cooler T_c , respectively is equal to 4. What is its theoretical efficiency, and what is an amount of mechanical work done by this engine after taking the heat Q = 200 J?

Problem #9.

For a Carnot engine working at temperature of heater $T_h = 600$ K, the efficiency $\eta = 40\%$. If its efficiency increases to $\eta = 75\%$, what is a respective temperature of heater, when a temperature of cooler kept constant?

*in some problems some additional assumption based on the general knowledge may be necessary