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11..  SSwwiittcchhiinngg  ddeevviicceess  aanndd  cciirrccuuiittss  

The switching devices posses the property of having associated with them two distinct physical 
states. The actual signal values of these states differ from one device to another upon their 
design, but still these devices are controlled by two-valued signals and are capable of producing 
two-valued signals. 
If a circuit is constructed of such bi-stable devices, it is capable of receiving two-valued signals at 
its input and producing two-valued signals on its output. Such a circuit is called a switching circuit.  
 
Any switching circuit can be represented by the switching functions of its outputs. On the other 
hand, the switching circuit can implement a switching function. 
If the output values of the circuit are at any time determined strictly by the inputs at that time, such 
circuit is called a combinational circuit. 

22..  GGaatteess  

Gates are the switching devices often used to implement switching functions.  
 
The most commonly used gates are shown below in the table. 
 

Logical symbol Function performed Name 

 
A 
B 

 

 
Y 

Logical sum 

BAY +=  

OR 

A 
B 

 

 
Y 

Logical multiplication 

BAY ⋅=  

AND 

 
A 

 

 
Y 

Logical complementation 

AY =  

NOT 

 
A 
B  

 
Y 

Complemented sum 

BAY +=  

NOR 

A 
B 

 

 
Y 

Complemented product 

BAY ⋅=  

NAND 

A 
B  

Y Exclusive sum 

BABABAY ⋅+⋅=⊕=  

XOR 

A 
B  

Y Complemented exclusive 
sum 

BABABAY ⋅+⋅=⊕=  

XNOR 

 
Of course, for the simplification purposes, all gates listed above have no more than two inputs, 
but there are multiple-input gates as well. 
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Gates usually are used in sets corresponding to different systems functionally complete, i.e. such 
sets of gates, with which it is possible to implement any switching function. 
The most popular systems functionally complete are as follows: 

• OR, AND, NOT 

• OR, NOT 

• AND, NOT 

• NAND 

• NOR 
The switching devices used in the laboratory are of TTL technology, which means that all 
unconnected inputs are assumed to have the logical value “1”. 

33..  SSyynntthheessiiss  ooff  aa  ccoommbbiinnaattiioonnaall  sswwiittcchhiinngg  cciirrccuuiitt  

The aim of a synthesis of a combinational circuit is to obtain the output functions and then a 
logical diagram of the circuit when given its algorithm of work. 
The output functions of the circuit may be in different forms but they should always be optimal, 
taking into consideration the type and the number of switching devices used for implementation.  
 
The stages of designing process are as follows: 
1. Obtaining the algorithm of work for the circuit, basing on logical statements or a timing chart 
illustrating working conditions. 
2. Creating truth tables or Karnaugh maps for the output functions. 
3. Obtaining the canonical forms for the output functions. 
4. Obtaining the minimal output functions. 
5. Obtaining the output functions in forms adequate to implementation. 
6. Obtaining a logical diagram. 
Depending on a set of elements used for implementation, some stages of this process are not 
required. For example, to implement a function using multiplexer or demultiplexer the minimal 
form of a function is not necessary (such implementation is described in Exercise 11).  
Minimisation process may base on one of several methods, such as transformations of a logical 
expression, using Karnaugh maps, Quine – McClusky’s method, etc. For functions with a great 
number of variables (this “greatness” is, of course, relative), especially those that are weakly 
specified, we may use Kazakov method (described in Exercise 12&13). 
The most commonly used are, however, Karnaugh maps (for up to 6 variables) as offering very 
convenient representation of a function. 
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33..11..  EExxaammppllee  

Design a switching circuit with four inputs x1x2x3x4 and one output Y, detecting two or three ones 
on any of its inputs and indicating that with “1” on the output. 
 
As we have only four input variables, we may either use a truth table or a Karnaugh map to obtain 
a logical function for the output.  
From the truth table it is possible to obtain only canonical forms of the function. The function is 
fully specified (i.e. there is no such a combination of inputs for which we don’t care about the 
output – don’t care conditions do not occur), which means that by writing SoP form we know 
instantly the PoS form.  
The Karnaugh map representation, apart from giving the canonical forms of the function, offers 
the possibility of minimisation. Creating groups of ones and zeros we obtain the minimal SoP and 
PoS forms. The number of groups in the example depends on a decision whether we want to get 
the solution that is hazard-free. As hazards in general are described in Exercise 7, we assume 
that we don’t consider them for all tasks given within Exercise 1. 
 

Truth table   Karnaugh map      
x1x2x3x4 Y    x3x4    

0  0  0  0 0   x1x2 00 01 11 10 

0  0  0  1 0   00 0 0 1 0 

0  0  1  0 0   01 0 1 1 1 

0  0  1  1 1   11 1 1 0 1 

0  1  0  0 0   10 0 1 1 1 

0  1  0  1 1       Y 
0  1  1  0 
0  1  1  1 
1  0  0  0 
1  0  0  1 
1  0  1  0 
1  0  1  1 
1  1  0  0 
1  1  0  1 
1  1  1  0 
1  1  1  1 

1 
1 
0 
1 
1 
1 
1 
1 
1 
0 

  

 Y=Σ(3,5,6,7,9,10,11,12,13,14)x1x2x3x4 

 Y=Π(0,1,2,4,8,15)x1x2x3x4 

 

SoP Y = +⋅⋅+⋅⋅+⋅⋅+⋅⋅ 431321321421 xxxxxxxxxxxx  

              432431 xxxxxx ⋅⋅+⋅⋅+  

PoS Y = )()()( 431421321 xxxxxxxxx ++⋅++⋅++  

               )()( 4321432 xxxxxxx +++⋅++⋅  

 
Which one of these forms above should be chosen for implementation depends on the logical 
elements we are to use.  
The most commonly used systems functionally complete are two: one using only NAND gates 
and the other using NOR gates. 
Usually with NANDs the least number of transformations and elements used for implementation is 
achieved from the SoP form, while for NOR gates it is from the PoS form. 
It is not, however, the general rule.  
The implementation with NANDs requires adding double complementation, applying DeMorgan’s 
theorem to SoP form and then in one step we get the function containing only complemented 
products. 
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Y= 432431431321321421 xxxxxxxxxxxxxxxxxx ⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅  

Y= 432431431321321421 xxxxxxxxxxxxxxxxxx ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅  

The number of multiple-input NAND gates is 7 (not counting 6 NOT gates, which also have to be, 
however, implemented using NANDs) and a logical diagram looks as follows. 

 
As for implementation in reality we rarely have access to multiple-input gates and most commonly 
used are 2-input gates, we have to be able to do it. 
We need to transform the function in such a way that it is adequate to such implementation. It is 
done by adding double complementation for all cases of more than two inputs needed for a gate 
as shown below. 

Y= 432431431321321421 xxxxxxxxxxxxxxxxxx ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅  

Then a logical diagram looks as follows. 

 



LAB TLC  
Ex.1. Combinational switching circuits  

 Page 6 of 10 

When we compare these two diagrams we may easily extract from them some fragments showing 
how to implement multiple-input NANDs with 2-input gates. 

3-input gate 4-input gate 5-input gate 

 

  
 
For implementation with NORs the process is analogous. 
 
Sometimes, due to simpler logical expressions it is recommended to use SoP form for 
implementation with NORs or PoS form for implementation with NANDs. Then the transformations 
are as follows. 
 

Y= =⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅+⋅⋅ 432431431321321421 xxxxxxxxxxxxxxxxxx  

 

   = 432431431321321421 xxxxxxxxxxxxxxxxxx +++++++++++++++++  

 
 

Y= =+++⋅++⋅++⋅++⋅++ )()()()()( 4321432431421321 xxxxxxxxxxxxxxxx  

 

   = 4321432431421321 xxxxxxxxxxxxxxxx ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅  

44..  IItteerraattiivvee  sswwiittcchhiinngg  cciirrccuuiittss  

Iterative circuits are such combinational circuits that consist of a set of identical cells connected in 
a cascade, as shown in the picture below.  
 

 
 
In designing iterative networks we design a typical cell such as n-cell and 
than we are able to use it as many times as necessary for a circuit. 
What’s more, if there is a need for changing the number of cells (inputs) in 
the circuit, we can do it without actually changing the design or the 
structure of the whole circuit.  

 
A description of the n-cell is given in the form of logical expressions using as variables all inputs 
to the cell. These inputs are inputs of the circuit (xn) and a carry signal. On the other hand, carry 
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signal passes on information gathered in some previous cells. This makes the whole process and 
equations recursive. As it is with every recursive procedure, to work, it requires to be provided 
with some assumptions for a start. That is why, to make a solution for an iterative circuit complete, 
apart from specifying the n-cell in a form of equations or logical diagrams for its output and carry 
signal, we also have to give assumptions for incoming carry signal to the first cell in the circuit. Its 
index “1” or “0” depends on a convention. We have N cells either from 0 to N-1 or from 1 to N. 
 
Among different iterative circuits we recognise the group connected with arithmetical operations – 
there could be an adder, a subtractor or a comparator of binary numbers. Both an adder and a 
subtractor should perform their operations starting with the least significant bits of binary numbers 
and proceed towards the most significant bits. With a comparator, however, there is a different 
case. The binary numbers may be compared either starting from the least or the most significant 
bits.  
 
These circuits work, of course, in parallel, unlike serial arithmetical circuits, which then must be 
sequential switching circuits instead of combinational ones.  
 

55..  CCooddeess  aanndd  ccooddee  ccoonnvveerrtteerrss  

Coding is an action of assigning some symbols to different information. The set of symbols is 
called a code and a code using all possible combinations of symbols is called a complete code.  
Codes that represent decimal numbers as binary are called binary-decimal. 
The most often used codes are listed below. 
 

Decimal 
digit 

Natural 
binary code 

Gray+3 
code 

Watts’ 
code 

Excess 3  
(Plus 3) code 

1 out of 10 code 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 

0010 
0110 
0111 
0101 
0100 
1100 
1101 
1111 
1110 
1010 

0000 
0001 
0011 
0010 
0110 
1110 
1010 
1011 
1001 
1000 

0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 

0000000001 
0000000010 
0000000100 
0000001000 
0000010000 
0000100000 
0001000000 
0010000000 
0100000000 
1000000000 

 
There is a group of codes called cyclic, which have such property that two consecutive numbers 
differ in only one bit (are logically adjacent).   
It is very convenient to represent or create such codes with the help of Karnaugh map.  
 

 00 01 11 10   00 01 11 10 

00 0 1 2 3  00 0 1 2 3 

01 7 6 5 4  01    4 

11 8 9 10 11  11    5 

10 15 14 13 12  10 9 8 7 6 

 Gray code   Watts’ code 
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Code converters are such switching circuits that operate on codes and they are divided into three 
categories: 

• Encoders that translate a number from a 1 out of n code into any other code, 

• Decoders, which transform a number in a code different to a 1 out of n code into this code, 

• Translators that transform a number form one code to another but neither of them is a 1 out of 
n code. 

As designing an encoder or decoder seems to be a task easy enough, in the example given we 
will show the process of designing a translator. 
 

55..11..  EExxaammppllee  

 00 01 11 10 

00 6 7 8 9 

01 5 14 15 10 

11 4 13 12 11 

Design a translator from the Gray code into the 
cyclic code given by the map below. Present a 
solution in a form of the minimal output functions. 

10 3 2 1 0 

 
The first step, not mandatory but recommended, is to create a truth table where on the left we 
place the numbers in the input code (usually in increasing order) and on the right their equivalents 
in the output code. 
 
Gray code 
g3  g2  g1  g0 

Output 
code 
o3  o2  o1  o0 

 

0  0  0  0 
0  0  0  1 
0  0  1  1 
0  0  1  0 
0  1  1  0 
0  1  1  1 
0  1  0  1 
0  1  0  0 
1  1  0  0 
1  1  0  1 
1  1  1  1 
1  1  1  0 
1  0  1  0 
1  0  1  1 
1  0  0  1 
1  0  0  0 

1  0  1  0 
1  0  1  1 
1  0  0  1 
1  0  0  0 
1  1  0  0 
0  1  0  0 
0  0  0  0 
0  0  0  1 
0  0  1  1 
0  0  1  0 
0  1  1  0 
1  1  1  0 
1  1  1  1 
1  1  0  1 
0  1  0  1 
0  1  1  1 

 

 
 
Then we need to create Karnaugh map for each of the 
output bits o3o2o1o0. The left side of the table informs us 
where we should put the appropriate value in the 
Karnaugh map. However, such detailed procedure of 
filling maps is very time-consuming. 
 
To make the process faster, we should keep in mind 
that the order of values of the output code corresponds 
to the way of proceeding through the map with the input 
code. If we follow this order, we will get complete maps 
for all outputs much faster. 
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 g1g0  g1g0  g1g0  g1g0 
g3g2 00 01 11 10 g3g2 00 01 11 10 g3g2 00 01 11 10 g3g2 00 01 11 10 

00 1 1 1 1 00 0 0 0 0 00 1 1 0 0 00 0 1 1 0 

01 0 0 0 1 01 0 0 1 1 01 0 0 0 0 01 1 0 0 0 

11 0 0 0 1 11 0 0 1 1 11 1 1 1 1 11 1 0 0 0 

10 0 0 1 1 10 1 1 1 1 10 1 0 0 1 10 1 1 1 1 

    o3     o2     o1     o0 

 
With the assumption that we do not consider the risk of hazards, the output functions in their 
minimal SoP form look as follows. 

1201233 ggggggo ⋅+⋅+⋅=  

12232 ggggo ⋅+⋅=  

12303231 gggggggo ⋅⋅+⋅+⋅=  

01202230 gggggggo ⋅⋅+⋅+⋅=  

66..  TTaasskkss  ttoo  bbee  ppeerrffoorrmmeedd  dduurriinngg  llaabboorraattoorryy  

1. Design a combinational circuit controlling conditions of work for a water mixer. The mixer can be 
filled with cold, warm or hot water. The temperature of water tw is indicated by two temperature 
sensors X4 and X5 (X4=1 when tw ≥ t4 and X5=1 when tw ≥ t5, where t4 < t5 and t4, t5 correspond to 
the level of temperature switching on the sensors).  
Cold water is poured by Z1 valve, warm water by Z4 valve and hot water by Z2 valve. The are two 
outlets from a water container: Z3 and Z5. The level of water is indicated by three level sensors X1, 
X2, X3, which switch on when water exceeds their level.  
 
The circuit should meet the following requirements: 

• Outflow of water through Z3 when water temperature is  t5>tw≥t4 and the level is above X3, 

• Outflow of water through Z5 when water temperature is either tw>t5 or t4>tw and the level 
exceeds X1, 

• Filling with warm and hot or cold water (depending on the water temperature tw) when 
water is below X3, 

• Filling the container with either cold and hot water, or only hot or only cold water 
(depending on a water temperature tw) when water is above X3, 

• Filling the container with either only cold or only hot water (depending on a water 
temperature tw) when water is above X2, 

• No filling (no matter what tw is) when water exceeds X1. 
 

2. Design an iterative switching circuit detecting an odd number of ones on its N inputs and 
indicating that with “1” on the output from the last cell in the circuit.  
 

3. Design an iterative switching circuit detecting a sequence 111 on any three consecutive bits and 
indicating that with “0” on the output from the cell corresponding to the last bit of the sequence. 
 

4. Design a circuit comparing two 2-bit binary numbers and indicating their equality with “0” on the 
output. 
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5. Design a circuit with two programming inputs p and q and two data inputs a and b. When the 
programming signals have the same values (i.e. p = q) the circuit should perform a logical sum of 
its data inputs, otherwise it should produce their logical multiplication. 

6. Design a translator from Gray code into natural binary code. 
7. Design a translator from the cyclic code presented in the map below into natural binary code. 

 

 00 01 11 10 

00 6 7 8 9 

01 5 0 1 10 

11 4 3 2 11 

10 15 14 13 12 
 

 

77..  IInnssttrruuccttiioonnss  ttoo  ffoollllooww  

1. Solve all tasks before the exercise. 
2. Implement the circuits specified by your supervisor (using given elements). 
3. Present working circuits to your supervisor for acceptance. 
 


