Zaktad Mikroinformatyki .,ﬁj%‘\
i Teorii Automatow Cyfrowych \%ﬂ

‘:\.-:;?

Theory of Logic Circuits

Laboratory manual

Exercise 11

Implementing Logic Functions Using MSI Multiplexers and

Demultiplexers

© 2008 Tomasz Podeszwa, Piotr Czekalski (edt.)

1.1. Multiplexer

A Multiplexer (MUX) is a circuit that is used to direct one out of 2" inputs to a single output. It is
also called Data Selector because n-input select lines are used to select one of the input signals
and direct it to the output. A block diagram of 4-to-1 line Multiplexer with enable input is shown in
Fig. 1 and truth table for it in Fig. 2.

MUX
EN —O EN
DI0 ——— 0
DIl — 1

DO

b —— 1 I ouT|
D3 — |3

S

10

SI1 SIo

Fig. 1. Block diagram of a 4-to-1 line Multiplexer

EN DI |DI |DI |DI |SI1|SI0|DO
0O |1 |2 |3

1 X X[X | X | X[X]0
Ol 0| X| X | X]|]0]O0]O
O[1 | X[X|X|]0]O0][1
O X|O0o | X | X]|]0|1]O
O X |1 [X | X|]0|1][1
O X | X|]0|X|1]0]O0
O | X[X[1| X]|1]0]1
O X | X|X|]0|1]1]0
O [X | X[X|1]1]1]1

Fig. 2. Truth table of a 4-to-1 line Multiplexer

Since the enable input EN has negation symbol at its input in the block diagram, 0 enables device
and 1 disables the device. Since the output line has no negation symbol, when the device is
disabled, the output signal DO is 0. When the device is enabled, the device output signal DO
follows the data input signal selected by select lines SI1 and SI0. Fig. 3 shows the functional logic
diagram for 4-to-1 MUX with enable input.

Page 2 of 13

LAB TLC

EN

EN

DIl —

St —(y
S10 ——

EN

DI2 —
SI1 |

S10 —O

—0
DI3 —
SI1T —
SI0 ——

EN

—0
DI0 —|)
Sl —¢
S10 —O

Fig. 3. Functional logic diagram for a 4-to-1 MUX with an enable input

Smaller Multiplexers can be connected together to obtain larger configuration. Fig. 4 illustrates in
block diagram form how five 4-to-1 Multiplexers can be connected to obtain 16-to-1 Multiplexer.

EN—O
DIO—
DIlI—
DI2—
DI3—]

EN

0
1
2
31 0

EN—O
DI4—
DI5S—
DI6—
DIT—]

EN—O
DI&—
DI9—

DI10—
DIIT—]

[OS I S =)

—— DO

1 0

SI1 SI0

EN—O
DI12—
DI13—
DI14—
DI15— |

1 0

SI1 SI0

SI3 SI2

Fig. 4. A 16-to-1 line Multiplexer constructed from five 4-to-1 line Multiplexers

Page 3 of 13

1.2. Demultiplexer

A Demultiplexer (DMUX) is a circuit that receives a signal on a single input line and directs that
signal to one of 2" possible output lines. If the enable input is active, we can also call this circuit a
n-to2" Decoder. A block diagram of 1-to-4 line Demultiplexer is shown in Fig. 5a. A functional logic
diagram for the device is shown in Fig. 5b and truth table for it is shown in Fig. 6.

DMUX gﬁ—oDLO
EN —QEN —Q
0l—— po S10 —O
810 ———0|;, p| | ———D! EN g DI
S— - SI1 —O
SIl 1 2 D2 210)
3 D3

EN__(D2
SI1——
S10 —O

EN__(y D3
Sl ——
SI0 ——

T

(a) (b)

T

Fig. 5. Block diagram for a 1-to-4 line Demultiplexer (a) and its functional logic diagram (b)

EN [SI1[SI0O|DO |D1 |D2 |D3
1 [X [X |0 |0 |0 |0
o |0 |0 |1 |0 |0 |0
O |0 |1 |0 |1 |0 |0
o (1 |0 |O |0 |1 |O
o |1 |1 |0 [0 |0 |1

Fig. 6. Truth table of a 1-to-4 line Demultiplexer

Page 4 of 13

EN 0l— Do

I — DI

S10—0 DL

ST — 1 3 b——— D3

EN 0l—— D4

| — bs

S10—0 1o) S

ENABLE St —1 3 ——— D7
N o |_opo
| [opt

siz—o D| , | oD2 EN 0b—— D8

si3—1 , [_ops Y —"

10— 22— DIo

SI1 — 1 3 —— D11

EN 0l—— b2

1 D3

S10—0 Dl pu

11— 3 ——— DI5

Fig. 7. A 1-to-16 line Demultiplexer constructed from five 1-to-4 line Demultiplexers

Like Multiplexers, smaller Demultiplexers can also be connected together to obtain larger
configuration. Fig. 7 illustrates in block diagram form how five 1-to-4 line Demultiplexers can be
connected to obtain a 1-to-16 line Demultiplexer. Observe that ENABLE signal is activated when
input line is high (instead of Demultiplexer shown in Fig. 5).

When a Multiplexer is used to implement a logic function, that function does not need to be
minimized in the normal manner; however, a minimized function consisting of only a single literal
or a single product term would be more cost-effective using a gate-lever design. Usually logic
designers use truth tables to implement logic functions with Multiplexers. To illustrate the process,
the following function will be implemented using a Multiplexer:

F(a,b,c,d)=%(4,5,6,7,10,14)apcq

2.1. Implementing for Type 0.

A type 0 MUX design require no signal in the truth table representing the function to be partitioned
off. This means, that all signals are applied to the select inputs. Also the characteristic numbers of
the function are applied to the data inputs. For the specified function listed above, the
characteristic numbers are fy=0, =0, f,=0, f3=0, f,=1, f5=1, fs=1, f;=1, f5=0, f9=0, f10=1, f11=0,
f12=0, f13=0, f14=1 s f15=0 (see Flg 98)

Page 5 of 13

LAB TLC I

Ex.11. Implementing Logic Functions Using MSI Multiplexers and Demultiplexer?f%%?.ﬁ

0 ——QEN MUX 0 ——O|EN MUX

0 ———0] ——0

0 ——1] —1

0 —2 1 —12

0 ——|3 1 —13

11— 14 00— |4

11— 1|5 0o~ |5

1~ |6 0~ 16

1 |7 I F o~ |7 I F

OUT| oulp————

0 ——8] ————8

0 ———9 1] ——9

1 —10 0 —10

0 —11 1 —11

0O —12 11— 12

0~ |13 1 — |13

1~ 114 0o~ |14

0o~ |15 N 1= |15 g
BRI BB
abecd abocd

(a) (b)

Fig. 9. Implementation for type 0 16-to-1 Multiplexer design for function F

If a Multiplexer has negation on the output an Invertor must be included on the output of the
Multiplexer or characteristic numbers applied to data inputs must be complemented (see Fig. 9b).

Page 6 of 13

2.2. Implementing for Type 1.

A type 1 MUX design requires one signal to be partitioned off. Continuing with the same function
F, the truth table is now drawn and partitioned as shown in Fig. 10.The select inputs are
independent signals a,b,c, and the data inputs are the values (the subfunctions) in the truth table.
The reduced output column in Fig. 10 represents the output states as function of the partitioned-
off input signal d. The reduced outputs in the truth table consist of a set of subfunctions of the
signal that is partitioned off in the truth table. In this case, eight subfunctions are required where
each subfunction is written as function of d, that is, F(d). The implementation for type 1
Multiplexer design is shown in Fig. 11.

a b ¢ |d |[F F
O O O (0 |O
O O O (1 |0
001000
o o0 1 (1 |0
010011
o 1 0 |1 |1
011011
o 1 1 |1 |1
100000
1 0 0 (1 |0
1 0 1 |0 |1 g
1 0 1 |1 1|0
110000
1 1 0 |1 |0
1 1 1 [0 |1 4
1 1 1 |1 |0

Fig. 10. Truth table partitioned for a type 1 MUX design.

0 — dJEN MUX
0 ——0
0o —1
| —2 F
1 —3 I oUT———
d 04
d 5
(—
T 7 S
T
abc

Fig. 11. Implementation for a type 1 MUX design.

Page 7 of 13

LAB TLC

Ex.11. Implementing Logic Functions Using MSI Multiplexers and Demultiplexer . J |

:;f(__"
#’

2.3. Implementing for Type 2 and 3.

Fig. 12a and b illustrate truth table partitioning for a type 2 and 3 Multiplexer design respectively.
The two signals ¢ and d are partitioned off for a type 2 MUX design, while the three signals b, c,
and d are partitioned off for a type 3 MUX design. Fig. 13 a and b show the implementation for a
type 2 and type 3 MUX design.

a b |c d |F F a |[b ¢ d |[F F
O 0 (0 0 |0 0O [0 0 0 |0
o o0 (0 1 |O 0 o (0 0 1 |0
o o0 |1 0 |0 O [0 1 0 |O

O o (1 1 |0 o (0 1 1 |0 b
o 1 (0 0 (1 o (1 0 0 |1
o 1 (0 1 |1 1 o (1 0 1 |1
o 1 (1 0 |1 o (1 1 0 |1
o 1 1 1 1 o 1 1 1 [1

1 0 (0 0 |O ~ 1 /0 0 0 |0 g
1 0o 1 o © 110 o 1 |o
1 0 |1 0 |1 1 10 1 0 |1
1.0 (1 1 10 1 /10 1 1 |0
T 1 10 0 |0 g 1 (1 0 0 |0
1 1 |0 1 |0 1 /1 0 1 |0
1 1 |1 0 |1 1 11 1 0 |1
1. 1 1 1 10 1 1 1 1 |0
(a) (b)
Fig. 12. Truth table partitioned for a type 2 (a) and a type 3 (b) MUX design.
g—OEN MUX 0 MUX
d d |1 ouT|F 4 N T (1"1 out F
cd

TS S
1 0 0
N |
ab a

(a) (b)
Fig. 13. Implementation for a type 2 (a) and type 3 (b) MUX design.

Since Demultiplexers do not suffer from a lack of outputs like Multiplexers do, Demultiplexer
implementations are normally carried out for Boolean functions with multiple outputs. Using a
Demultiplexer with n select inputs with an external OR elements connected to the appropriate
outputs of a Demultiplexer any Boolean function of n variables can be implemented. If k Boolean
functions are to be implemented using a Demultiplexer, k external OR elements can be required.

Page 8 of 13

LAB TLC all

Ex.11. Implementing Logic Functions Using MSI Multiplexers and Demultiplexer?.\fx;ﬁ;;%;:

L

3.1. Example

Design a 4-bit binary-to-gray code converter with the truth table shown in Fig. 14.
b3 b2 b1 b0 |g83 g2 g1 g0
o 0o o O (0 0O 0 o
o 0 o 1 [0 0O 0 1
o o 1 O (0 O 1 1
o o 1 1 |0 0 1 O
o 1. o O (0 1 1 O
o 1. 0 1 |0 1 1 1
o 1 1 0 (0 1 0 1
o 1. 1 1 |0 1 0 O
1 0 0 O |1 1 0 O
1 0 0 1 (1 1 0 1
1 0 1 0 |1 1 1 1
1 0 1 1 |1 1 1 0
1 1 0 0 |1 0 1 O
1 1 0 1 (1 0 1 1
1 1 1 0 |1 0 0 1
11 1 1 |1 0 0 O

Fig. 14. The truth table a 4-bit binary-to-gray code converter.

We can write the Boolean functions for the outputs of the code converter in terms of the inputs as
follows.
g3=2(8,9,10,1 1 ,12713,14,15)b3b2b1b0
92=2(4,5,6,7,8,9,1 0,1 1)b3b2b1b0
91=%(2,3,4,5,10,11,12,13)p3b2b160
gO=Z(1 ,2,5,6,9,10,13,14)b3b2b1b0

Since there are four bits of input information required to determine the minterms, a 1-to-16 line
Demultiplexer is utilized as shown in Fig. 15 (note that OR element symbols shown in the figure
are the DeMorgan equivalent symbol for NAND gates).

Page 9 of 13

LAB TLC

Ex.11. Implementing Logic Functions Using MSI Multiplexers and Demultiplexer"f.\’_'_”_%_'__fj_.i

DMUX
0— EN
0 O
50— 0 1 ©
bl1—1 I 2 1O @ L 4
b2—2 31O @
b3 ®3 4 O—e @
5 O L J
6 O 4 ’
7 O @
Dl s o ®
9 IO ® ®
10 IO @ ? ®
e ® ®
12 O
13 O ?Q o
14 O
15 P ?
O o O S Q
i 0
‘ gl
g2
o3

Fig. 15. Design a 4-bit binary-to-gray code converter using 1-to-16 Demultiplexer and three NAND
elements.

Notice in the design in example above that there are the same number of 1s in each gray code
function as there are 0s. When designing with Demultiplexers, it is important to count the number
of 1s and Os in function. If there are fewer 1s, the function is best implemented using the miniterm
compact form for the 1s of the function; however, if there are fewer Os, the function is best
implemented using miniterm compact form for the Os. A circuit implemented with fewer minterms
requires gates with less input lines and takes less wiring.

3.2. Example

Obtain the functional logic diagram for the following functions using one 1-to-16 Demultiplexer
without output inverters.

F1=2(0,1,5,8,13)abcd

Fo=T11(3,7,8,12,14,15)apcq

Fs=%(1,3,4,5,7,8,11,12,13,14,15) 4pcq

F4=11(0,2,3,6,7,8,10,12,13,15)apcd

Solution

Because functions F, and F4 are presented in maxterm compact form, we must convert them to
miniterm form.

F.=% (0,1,2,4,5,6,9,10,11,13)apcq

F4= by (1 ,4,5,9,1 1 714)abcd

In the second step we count 1s and Os in each function: functions F, and F3 have less Os than 1s,
so for this functions are better implemented using miniterm compact form for the Os (see Fig. 16).

Page 10 of 13

LAB TLC all

Ex.11. Implementing Logic Functions Using MSI Multiplexers and Demultiplexer?.\fxg*%g_

..;_.
__E#;
DMUX
0—Q EN
0 —eo ®
d—0 1 @ @
c—1 I 2 @
b—12 3
a3 4 4
5 ® @
6 4
7 L 4
D| g ®
9 @ @
10
11 L 2
12 L 2
13 4
s ' ’
s T A T
~
F4
F3
F2
F1

Fig. 16. Design functions F1, Fy, F3, and F4 using 1-to-16 Demultiplexer.

A type 2 (and higher) MUX design requires two or more signal to be partitioned off. Using this
signals are created set of functions which are connected to input lines of Multiplexer. Example
below presents this problem and its solution.

Page 11 of 13

LAB TLC all

Ex.11. Implementing Logic Functions Using MSI Multiplexers and Demultiplexer?.\f_x;ﬁ;;%»_.r

4.1. Example

Obtain the functional logic diagram for the following function using one 1-to-4 Demultiplexer and
8-to-1 Multiplexer.

F=%(2,3,4,6,9,10,12,16,17,18,19,21,23,25,26,30,31) apcde

Solution

Karnaugh table for function F is shown in Fig. 17 (signals d and e are partitioned off in the
Karnaugh map) and implementation for this function in Fig. 18.

de
abc 00 (01 [11 [10 |F
000 (0|0 [0 [1 [1 |d
001 |11 |o [0 [1 [~€
011 |31 |0 [0 |0 [~d~e
010 |2 |0 |1 [0 |1 [d@e
110 [6 |0 [1 [0 [1 |de@e
11 |7 /0 [0 |1 [1 |d
101 |50 [1 [1 [0 Je
100 [4 |1 [1 [1 [1 |1

Fig. 17. Karnaugh table for example 3

DMUX
0 —QEN 0 MUX
—0EN
0
e 0 1 0
I D 1
d @1 2 5
3 3
L I OUT] F
5
6
o
s
2 ‘10
abec
Fig. 18. Implementation for function F

' Where ~ sign stands for complementary operator.

Page 12 of 13

LAB TLC

Ex.11. Implementing Logic Functions Using MSI Multiplexers and Demultiplexer . J |

:;f(__"
#’

5.
1.

wWnN =

Obtain function F4, Fy, F3, F4 using one 1-to-16 Demultiplexer (with invertors on output lines) and
NAND elements.

F1= I1 (1 ,5,6,9,12)abcd

Fo=%(2,6,9,10,11,12)apcq

Fs=2(1,2,3,5,6,8,9,10,12,14,15)apcq

F4=11(1,2,5,6,7,9,10,11,14,15)apc4

Obtain function Z=ab(c+(~c)d)+~d((~a)(~c)+bc)+(~b)c(~d) using:

a. one 16-to-1 line Multiplexer (using a type 0 design)

b. one 8-to-1 line Multiplexer and inverter element (using a type 1 design)

c. one 4-to-1 line Multiplexer and NAND or Inverter elements (using a type 2 design)

d. one 2-to-1 line Multiplexer and NAND or Inverter elements (using a type 3 design)

e. one 4-to-1 line Multiplexer and 1-to-4 line Demultiplexer and NAND or Inverter elements (using
a type 2 design with Demultiplexer)

. Instructions to follow

Solve all tasks before the exercise.
Implement the circuits specified by your supervisor (using given elements).
Present working circuits to your supervisor for acceptance.

Page 13 of 13

