	Theory of Logic Circuits					
Academic year	Term		Exercise Supervisor	Group	Section	
0040/0040	Thursday	Makrokierunek	KD			
2018/2019	15:15-16:45		КР	3		

Report from exercise number 4

Exercise performed on: 2019-04-25

Subject of the exercise: Asynchronous sequential logic circuits

Section consists of:

Mikołaj Dobosz Wojciech Bieniek

Task 1

Implement with chosen by the supervisor elements (with or without sr latches), a circuit controlling the switching of two pumps. The pumps P1 and P2 (see fig.1) should be switched on alternately (only one pump can work at a time) when water exceeds the level of the sensor x2 (i.e. when x2 = 1). Working pump should be switched off when the water lever is below the sensor x1 (i.e. when x1 = 0). Assume that water level grows when pumps are off, and that it decreases when any pump is working.

x1x2	00	01	11	10	P1P2						
0			1	0	00						
1			1	2	01						
2	3			2	01						
3	3			4	00	q1q2\x1x2	00	01	11	10	P1P2
4			5	4	00	00	0		1	\odot	00
5			(5)	6	10	01	3		ⓓ	\bigcirc	01
6				6	10	11	3		5	4	00
7	\overline{O}			0	00	10	7		9	\bigcirc	10

q1q2\x1x2	00	01	11	10
00	0		0	0
01	1		0	0
11			1	1
10	0		1	1
		· • •		Q1

q1q2\x1x2	00	01	11	10
00	0		1	0
01	1		1	
11	1		0	1
10	0		0	0
				Q2

 $Q_1 = Q_2 \overline{x_1} + Q_1 Q_2 + x_1 Q_1$

 $\overline{S1} = \overline{Q_2 \overline{x_1}}$

 $\overline{R1} = \overline{\overline{Q}_2}\overline{\overline{x}_1}$

Q1\Q2	0	1
0	0	0
1	1	0
		P1

 $P1=Q1\overline{Q2}=\overline{\overline{Q1}+Q2}$

 $Q_{2} = Q_{2}\overline{x_{2}} + x_{2}\overline{Q_{1}} + \overline{Q_{1}}Q_{2} = \overline{Q_{2}\overline{x_{2}}} * \overline{x_{2}\overline{Q_{1}}} * \overline{\overline{Q_{1}}Q_{2}}$ $\overline{S2} = \overline{\overline{Q_{1}}x_{2}}$ $\overline{R2} = \overline{Q_{1}x_{2}}$

Q1\Q2	0	1
0	0	1
1	0	0

P2

 $P2 = \overline{Q1}Q2 = \overline{Q1 + \overline{Q2}}$

Sorry about those upside-down flip-flops!

Task 2

Implement with chosen by the supervisor elements (with or without sr latches), a circuit controlling the operation of the inertial two-directional engine (fig 2). The engine can start to rotate only if it is stopped (RIGHT = 0, LEFT = 0, STOP = 1). The engine should start to rotate in right direction (RIGHT = 1) when button R is pressed for a short moment and it should keep rotating until button S is pressed. Pressing the R or L button when engine rotates right should be ignored. The engine should start to rotate in left direction (LEFT = 1) when button L is pressed for a short moment and it should keep rotating until button S is pressed. Pressing the L or R button when engine rotates left should be ignored. Similarly pressing S button when engine is stopped should not change its state. Pressing it when engine rotates in any direction should stop it by assigning outputs: RIGHT = 0, LEFT = 0, STOP = 1. Since all input buttons are monostable radio ones, it is assumed that only one of buttons S, L, R can be equal to one at a time.

xr xs xl	00	01	11	10
000	0	0	1	
001	0	1	1	
011				
010	0	0	0	
110				
111				
101				
100	0	0	1	
				Q1

xr xs xl	00	01	11	10
000	0	1	1	
001	0	1	1	
011				
010	1	1	1	
110				
111				
101				
100	Q	0	1	
				Q2

 $\overline{s_1} = \overline{Q_2 x_L}$ $\overline{r_1} = \overline{x_s}$

 $\overline{s_2} = \overline{\overline{x_s}}$ $\overline{r_2} = \overline{\overline{Q_1}} x_R$

Q1\Q2	0	1
0	1	0
1		0
		Y _R

Q1\Q2	0	1
0	0	1
1		0
	-	Ys

Q1\Q2	0	1
0	0	0
1		1
		YL

