
 Zakład Mikroinformatyki
 i Teorii Automatów Cyfrowych

 © 2008 Tomasz Podeszwa, Piotr Czekalski (edt.)

Theory of Logic Circuits

Laboratory manual

Exercise 6

Selected arithmetic switching circuits

LAB TLC
Ex.6. Selected arithmetic switching circuits

 Page 2 of 8

11.. NNuummbbeerr ssyysstteemmss aanndd rreepprreesseennttaattiioonnss

There are many different numbers systems all over the world. Most of them are weight-positional
systems, where value of number’s each digit depends on both value of digit and it’s position in a
sequence of symbols. Therefore, during labs there will be implemented circuits working with these
number systems (exactly: working with numbers by a radix 2 called also binary system).

11..11.. WWeeiigghhtteedd--ppoossiittiioonnaall nnuummbbeerr ssyysstteemmss

In weighted-positional number systems each number is represented by sequence of digits
followed by a comma or period (which depends on country). The value of a particular digit in this
number depends on its position in the sequence of digits relative to a radix point. For example
number N in weighted-positional system by base r can be converted to equivalent decimal
number using the following polynomial function:

(N)r = (djdj-1dj-2...d3d2d1d0.d-1d-2d-3....d-k)r
= djr

j+dj-1r
j-1+dj-2r

j-2+...+d3r
3+d2r

2+d1r
1+d0r

0+d-1r
-1+d-2r

-2d-3r
-3+...+d-kr

-k = (M)10

Note: 0 ≤ di ≤ r-1
Besides decimal, the most popular systems are also binary (base 2), octal (base 8) and
hexadecimal (base 16).

11..22.. CCoonnvveerrttiinngg ffrroomm ddeecciimmaall ttoo ootthheerr nnuummbbeerr ssyysstteemmss

One of the methods used to convert from decimal to other number system is repeated radix
division technique for integers and multiplication technique for fractions. During conversion
process we must first break number into integer and fraction part. Next the integer part is
repeatedly divided by new base r and remainders are written in reverse order (from last to first) to
obtain integer part of destination number. Also fractional part is processed by repeatedly
multiplying by new base r and every integer number obtained during each step is written in order
that they appear. For example converting number (121.375)10 into number by base 2 we obtain:
 121:2 = 60 r=1
 60:2=30 r=0
 30:2=15 r=0
 15:2=7 r=1
 7:2=3 r=1
 3:2=1 r=1
 1:2=0 r=1
and for fraction:
 0.375*2=0.75 r=0
 0.75*2=1.5 r=1
 0.5*2=1 r=1
so number (119.375)10 = (1111001.011)2

LAB TLC
Ex.6. Selected arithmetic switching circuits

 Page 3 of 8

11..33.. NNuummbbeerr rreepprreesseennttaattiioonnss

So far only positive numbers were presented. As in decimal, also in other systems we have to
present both positive (represented with “+” sign) and negative (represented with “-“ sign) values.
This notation is called sign magnitude. Computers are generally not designed to interpret a plus
or minus sign, so often the most significant bit is reserved for sign (0 means “+”, 1 means “-“).
During most operations computer circuits must first check sign bits of arguments and (according
to their values) perform appropriate operations.
Positive and negative numbers can also be expressed by two other number representations.
These are the diminished radix complement (DRC) or (r-1)’s complement representation, and
radix complement (RC) or r’s complement representation.
The (r-1)’s complement of a number N is defined by the relationship, ri-r-f-N, where N is the
number to be negated, r is the radix, i is the number of integer digits, and f is the number of
fractional digits.
To obtain 1’s complement of a binary number N, simply complement each digit of the number.
The r’s complement of a number N is defined by the relationship ri-N, where N is the number to be
negated, r is the radix, i is the number of integer digits, and f is the number of fractional digits.
To obtain 2’s complement of a binary number N, simply first obtain 1’s complement of N and then
add 1 at the least significant bit.
Notice that positive numbers in all representations presented above are expressed in the same
way.
Example (r=2):
Let (A)2=(11010011.01101)2
then we should use at least 9 positions for integer and 5 positions for fraction, so
(A)2=(011010011.01101)2
1. Using sign-magnitude representation: (-A)2=(111010011.01101)2
2. Using 1's complement representation: (-A)2=(100101100.10010)2
3. Using 2s complement representation: (-A)2=(100101100.10011)2
To convert negative numbers into positive, one should perform exactly the same operation as
above.

22.. AArriitthhmmeettiicc ooppeerraattiioonnss

The operations of addition, subtraction, multiplication, and division can be carried out in exactly
the same manner with binary numbers as they are with decimal numbers.
When number is in 1’s or 2’s complement representation, computer needs to use only Adder
circuit and Complementor circuit to obtain the result of all of these operations. When we need to
perform a subtraction operation, first subtrahend is converted into 1’s or 2’s complement and next
simply added to minuend. Notice that when binary numbers to be added are in a 2’s complement
representation the carry occurring from the sign bit position is simply ignored, while in a 1’s
complement representation this carry is added back to the least significant bit of the sum.
Since multiplication can always be performed by repeated addition, and division can be repeated
subtraction, the addition process can perform all four arithmetic operations.

LAB TLC
Ex.6. Selected arithmetic switching circuits

 Page 4 of 8

22..11.. BBiinnaarryy aaddddeerrss

Binary adder is a basic circuit performing addition operation for binary numbers A and B. This
simple combinational circuit obtains two signals Si (sum) and Ci+1 (carry to next position) from
signals Ai, Bi and Ci (carry from previous position). Fig. 1 presents the truth table and logic symbol
of 1-bit adder.

Ai Bi

Σ1Ci+1
Ci

Si

+

Ci Ai Bi Ci+1 Si

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Fig.1. 1-bit adder logic symbol and truth table

There are also more complex circuits. For example in fig. 2 there is presented n-bit adder. Input
signals A and B are represented as signals An-1...A0 and Bn-1..B0. Also the output sum is
represented as signals Sn-1..S0. This circuit also has carry signals: input (C0) and output (Cn).

An-1 ...Ai ...A1A0 Bn-1 ...Bi...B1B0

ΣnCn
C0

Sn-1 ... Si ...S1 S0

+

Fig.2. n-bit full adder logic symbol

LAB TLC
Ex.6. Selected arithmetic switching circuits

 Page 5 of 8

22..22.. BBiinnaarryy ccoommppaarraattoorrss

Another type of logic circuit used with binary numbers is a comparator. Fig. 3 presents the logic
symbol and the truth table of 1-bit comparator.

Ai Bi

comparator

A<B

A=B

A>B

<

=

>

< = > Ai Bi A<
B

A=
B

A>
B

0 0 1 0 0 0 0 1

0 0 1 0 1 1 0 0

0 0 1 1 0 0 0 1

0 0 1 1 1 0 0 1

0 1 0 0 0 0 1 0

0 1 0 0 1 1 0 0

0 1 0 1 0 0 0 1

0 1 0 1 1 0 1 0

1 0 0 0 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 0 0 0 1

1 0 0 1 1 1 0 0

Fig.3. 1-bit comparator logical symbol and truth table

This circuit sets exactly one of outputs “A<B”, “A=B” and “A>B” into state 1 according to compared
digits Ai and Bi and input signals “<”, “=” and “>”.
Like adders, also comparators can be realised as n-bit circuit.

22..33.. OOtthheerr cciirrccuuiittss

Circuits presented above are most commonly used. There are, however, other circuits. One of
them is binary subtractor. Presented in fig. 4. 1-bit subtractor realises operation Ai-Bi-Ci where Ci
signal is called borrow-out bit (borrow from current position to previous).

LAB TLC
Ex.6. Selected arithmetic switching circuits

 Page 6 of 8

Ai Bi

Σ1Ci+1
Ci

Si

-

Fig.4. 1-bit subtractor logic symbol

There are also specialised circuits called arithmetic-logic unit that realise many different
operations. One of them is TTL circuit 74181. This circuit realises e.g. addition, subtraction,
logical multiplication. The type of operation depends on signals on function inputs F3..F0 and M.

22..44.. AAddddiittiioonn uussiinngg 22''ss ccoommpplleemmeenntt rreepprreesseennttaattiioonn

To add two numbers written in 2's complement representation we should perform binary addition.
If carry from sign digit is detected, it should be ignored.
Example:
Let (A)2=(010011.011)2 and (B)2=(001001.101)2
then (-A)2=(101100.101)2 and (-B)2=(110110.011)2

A 010011.011
+B 001001.101

A+B 011101.000
Number is positive

A 010011.011
+(-B) 110110.011

A+(-B) 001001.110
Number is positive.
Carry is ignored

(-A) 101100.101
+B 001001.101

(-A)+B 110110.010
Number is negative.

 (-A) 101100.101
+ (-B) 110110.011

 (-A)+(-B) 100011.000
Number is negative.
Carry is ignored

Note: Result is also in 1's complement representation (except when overflow occurred).

LAB TLC
Ex.6. Selected arithmetic switching circuits

 Page 7 of 8

22..55.. AAddddiittiioonn uussiinngg 11''ss ccoommpplleemmeenntt rreepprreesseennttaattiioonn

To add two numbers written in 1's complement representation we should also perform binary
addition. If carry from sign digit is detected, it should be added on the least significant position of
the result.
Example:
Let (A)2=(010011.011)2 and (B)2=(001001.101)2
then (-A)2=(101100.100)2 and (-B)2=(110110.010)2

A 010011.011
+B 001001.101

A+B 011101.000
Number is positive

A 010011.011
+(-B) 110110.010

 001001.101
A+(-B) 001001.110
Number is positive.
Carry is added

(-A) 101100.100
+B 001001.101

(-A)+B 110110.001
Number is negative.

 (-A) 101100.100
+(-B) 110110.010

 100010.110
 (-A)+(-B) 100010.111
Number is negative.
Carry is added

Note: Result is also in 1's complement representation (except when overflow occurred).

22..66.. AAddddiittiioonn uussiinngg ssiiggnn mmaaggnniittuuddee rreepprreesseennttaattiioonn

In the case of sign magnitude representation addition is a little complicated. The addition
algorithm contains several steps:

1. Check signs of both numbers.
2. If signs are equal (both are positive or negative) add magnitudes and use the sign as sign of the

result.
3. If numbers have different signs, convert one (negative) of them to 1's or 2's complement

representation, add both numbers using hints from sections 2.4 or 2.5 and if result is negative,
convert it into sing magnitude representation.

22..77.. OOvveerrffllooww ddeetteeccttiioonn

Overflow is the most important problem that can occur during addition.
Example (2's complement representation):
Let (A)2=(010011.011)2
then (-A)2=(101100.101)2

A 010011.011
+A 010011.011

A+A 100100.110

Error: Result is negative!

(-A) 101100.101
+(-A) 101100.101

(-A)+(-A) 011001.010

Error: Result is positive!

LAB TLC
Ex.6. Selected arithmetic switching circuits

 Page 8 of 8

One of the possible solutions of detecting overflow is based on testing the carry onto and from
sign digit. If both carry signals are the same, the result of addition is correct. Otherwise there was
overflow error during addition operation (see examples presented above).
If overflow occurred, the number of integer digits should be increased (if it is possible).

22..88.. CCoommppaarriissoonn

If we use binary comparator for numbers in sign magnitude, 1's or 2's complement representation,
the result isn't correct. It is caused by sign bit, which is equal 1 for negative numbers but in binary
numbers has the biggest weight. To obtain correct result the negative numbers should be
complemented (in 1's and 2's complement representation), or both numbers should be tested like
during addition (in sign magnitude representation).
Using sign magnitude or 1's complement representation, there is one more problem: there are two
zeros: positive (e.g. 0000.0000) and negative (1000.0000 for sign magnitude or 1111.1111 for 1's
complement). For these reasons comparator should use an additional combinational circuit,
detecting positive and negative zeros and forcing equality one the output.

33.. TTaasskkss ttoo bbee ppeerrffoorrmmeedd dduurriinngg llaabboorraattoorryy

1. Obtain full 1-bit adder using NAND gates.
2. Obtain full 1-bit subtractor using NAND gates.
3. Obtain full 1-bit comparator using NAND gates.
4. Obtain full 5-bit adder using one 4-bit adder and NAND gates for numbers in:

a) 1’s complement representation
b) 2’s complement representation

5. Obtain full 5-bit comparator using one 4-bit comparator and NAND gates for numbers in:
a) 1’s complement representation (positive and negative zeros are equal)
b) 2’s complement representation

44.. IInnssttrruuccttiioonnss ttoo ffoollllooww

1. Solve all tasks before the exercise.
2. Implement the circuits specified by your supervisor (using given elements).
3. Present working circuits to your supervisor for acceptance.

