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11..  NNuummbbeerr  ssyysstteemmss  aanndd  rreepprreesseennttaattiioonnss    

There are many different numbers systems all over the world. Most of them are weight-positional 
systems, where value of number’s each digit depends on both value of digit and it’s position in a 
sequence of symbols. Therefore, during labs there will be implemented circuits working with these 
number systems (exactly: working with numbers by a radix 2 called also binary system).  

11..11..  WWeeiigghhtteedd--ppoossiittiioonnaall  nnuummbbeerr  ssyysstteemmss  

In weighted-positional number systems each number is represented by sequence of digits 
followed by a comma or period (which depends on country). The value of a particular digit in this 
number depends on its position in the sequence of digits relative to a radix point. For example 
number N in weighted-positional system by base r can be converted to equivalent decimal 
number using the following polynomial function: 

(N)r = (djdj-1dj-2...d3d2d1d0.d-1d-2d-3....d-k)r  
= djr

j+dj-1r
j-1+dj-2r

j-2+...+d3r
3+d2r

2+d1r
1+d0r

0+d-1r
-1+d-2r

-2d-3r
-3+...+d-kr

-k = (M)10 

Note: 0 ≤ di ≤ r-1 
Besides decimal, the most popular systems are also binary (base 2), octal (base 8) and 
hexadecimal (base 16). 

11..22..  CCoonnvveerrttiinngg  ffrroomm  ddeecciimmaall  ttoo  ootthheerr  nnuummbbeerr  ssyysstteemmss  

One of the methods used to convert from decimal to other number system is repeated radix 
division technique for integers and multiplication technique for fractions. During conversion 
process we must first break number into integer and fraction part. Next the integer part is 
repeatedly divided by new base r and remainders are written in reverse order (from last to first) to 
obtain integer part of destination number. Also fractional part is processed by repeatedly 
multiplying by new base r and every integer number obtained during each step is written in order 
that they appear. For example converting number (121.375)10 into number by base 2 we obtain: 
 121:2 = 60  r=1 
 60:2=30  r=0 
 30:2=15  r=0 
 15:2=7  r=1 
 7:2=3  r=1 
 3:2=1  r=1 
 1:2=0  r=1 
and for fraction: 
 0.375*2=0.75 r=0 
 0.75*2=1.5 r=1 
 0.5*2=1 r=1 
so number (119.375)10 = (1111001.011)2 
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11..33..  NNuummbbeerr  rreepprreesseennttaattiioonnss  

So far only positive numbers were presented. As in decimal, also in other systems we have to 
present both positive (represented with “+” sign) and negative (represented with “-“ sign) values. 
This notation is called sign magnitude. Computers are generally not designed to interpret a plus 
or minus sign, so often the most significant bit is reserved for sign (0 means “+”, 1 means “-“). 
During most operations computer circuits must first check sign bits of arguments and (according 
to their values) perform appropriate operations. 
Positive and negative numbers can also be expressed by two other number representations. 
These are the diminished radix complement (DRC) or (r-1)’s complement representation, and 
radix complement (RC) or r’s complement representation. 
The (r-1)’s complement of a number N is defined by the relationship, ri-r-f-N, where N is the 
number to be negated, r is the radix, i is the number of integer digits, and f is the number of 
fractional digits. 
To obtain 1’s complement of a binary number N, simply complement each digit of the number. 
The r’s complement of a number N is defined by the relationship ri-N, where N is the number to be 
negated, r is the radix, i is the number of integer digits, and f is the number of fractional digits. 
To obtain 2’s complement of a binary number N, simply first obtain 1’s complement of N and then 
add 1 at the least significant bit. 
Notice that positive numbers in all representations presented above are expressed in the same 
way. 
Example (r=2): 
Let (A)2=(11010011.01101)2 
then we should use at least 9 positions for integer and 5 positions for fraction, so 
(A)2=(011010011.01101)2 
1. Using sign-magnitude representation: (-A)2=(111010011.01101)2 
2. Using 1's complement representation: (-A)2=(100101100.10010)2 
3. Using 2s complement representation: (-A)2=(100101100.10011)2 
To convert negative numbers into positive, one should perform exactly the same operation as 
above. 
 

22..  AArriitthhmmeettiicc  ooppeerraattiioonnss  

The operations of addition, subtraction, multiplication, and division can be carried out in exactly 
the same manner with binary numbers as they are with decimal numbers. 
When number is in 1’s or 2’s complement representation, computer needs to use only Adder 
circuit and Complementor circuit to obtain the result of all of these operations. When we need to 
perform a subtraction operation, first subtrahend is converted into 1’s or 2’s complement and next 
simply added to minuend. Notice that when binary numbers to be added are in a 2’s complement 
representation the carry occurring from the sign bit position is simply ignored, while in a 1’s 
complement representation this carry is added back to the least significant bit of the sum.  
Since multiplication can always be performed by repeated addition, and division can be repeated 
subtraction, the addition process can perform all four arithmetic operations. 
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22..11..  BBiinnaarryy  aaddddeerrss  

Binary adder is a basic circuit performing addition operation for binary numbers A and B.  This 
simple combinational circuit obtains two signals Si (sum) and Ci+1 (carry to next position) from 
signals Ai, Bi and Ci (carry from previous position). Fig. 1 presents the truth table and logic symbol 
of 1-bit adder. 

Ai Bi

Σ1Ci+1
Ci

Si

+

 
 

Ci Ai Bi Ci+1 Si 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 

 

Fig.1. 1-bit adder logic symbol and truth table 
 
There are also more complex circuits. For example in fig. 2 there is presented n-bit adder. Input 
signals A and B are represented as signals An-1...A0 and Bn-1..B0. Also the output sum is 
represented as signals Sn-1..S0. This circuit also has carry signals: input (C0) and output (Cn). 
 
 

An-1 ...Ai ...A1A0 Bn-1 ...Bi...B1B0

ΣnCn
C0

Sn-1 ... Si ...S1 S0

+

 
Fig.2. n-bit full adder logic symbol 
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22..22..  BBiinnaarryy  ccoommppaarraattoorrss  

Another type of logic circuit used with binary numbers is a comparator. Fig. 3 presents the logic 
symbol and the truth table of 1-bit comparator.  

Ai Bi

comparator

A<B

A=B

A>B

<

=

>

 
 

< = > Ai Bi A<
B 

A=
B 

A>
B 

0 0 1 0 0 0 0 1 

0 0 1 0 1 1 0 0 

0 0 1 1 0 0 0 1 

0 0 1 1 1 0 0 1 

0 1 0 0 0 0 1 0 

0 1 0 0 1 1 0 0 

0 1 0 1 0 0 0 1 

0 1 0 1 1 0 1 0 

1 0 0 0 0 1 0 0 

1 0 0 0 1 1 0 0 

1 0 0 1 0 0 0 1 

1 0 0 1 1 1 0 0 

Fig.3. 1-bit comparator logical symbol and truth table 
 

This circuit sets exactly one of outputs “A<B”, “A=B” and “A>B” into state 1 according to compared 
digits Ai and Bi and input signals “<”, “=” and “>”. 
Like adders, also comparators can be realised as n-bit circuit. 

22..33..  OOtthheerr  cciirrccuuiittss  

Circuits presented above are most commonly used. There are, however, other circuits. One of 
them is binary subtractor. Presented in fig. 4. 1-bit subtractor realises operation Ai-Bi-Ci where Ci 
signal is called borrow-out bit (borrow from current position to previous). 
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Ai Bi

Σ1Ci+1
Ci

Si

-

 
Fig.4. 1-bit subtractor logic symbol 

 
There are also specialised circuits called arithmetic-logic unit that realise many different 
operations. One of them is TTL circuit 74181. This circuit realises e.g. addition, subtraction, 
logical multiplication. The type of operation depends on signals on function inputs F3..F0 and M. 

22..44..  AAddddiittiioonn  uussiinngg  22''ss  ccoommpplleemmeenntt  rreepprreesseennttaattiioonn    

To add two numbers written in 2's complement representation we should perform binary addition. 
If carry from sign digit is detected, it should be ignored. 
Example: 
Let (A)2=(010011.011)2 and (B)2=(001001.101)2 
then (-A)2=(101100.101)2 and (-B)2=(110110.011)2 
 

 
A 010011.011 
+B 001001.101 

A+B 011101.000 
Number is positive 

 
A 010011.011 
+(-B) 110110.011 

A+(-B) 001001.110 
Number is positive.  
Carry is ignored 

 
(-A) 101100.101 
+B 001001.101 

(-A)+B 110110.010 
Number is negative. 

 
   (-A) 101100.101 
+  (-B) 110110.011 

   (-A)+(-B) 100011.000 
Number is negative. 
Carry is ignored 

 
Note: Result is also in 1's complement representation (except when overflow occurred). 
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22..55..  AAddddiittiioonn  uussiinngg  11''ss  ccoommpplleemmeenntt  rreepprreesseennttaattiioonn    

To add two numbers written in 1's complement representation we should also perform binary 
addition. If carry from sign digit is detected, it should be added on the least significant position of 
the result. 
Example: 
Let (A)2=(010011.011)2 and (B)2=(001001.101)2 
then (-A)2=(101100.100)2 and (-B)2=(110110.010)2 

 

 
A 010011.011 
+B 001001.101 

A+B 011101.000 
Number is positive 

 
A 010011.011 
+(-B) 110110.010 

 001001.101 
A+(-B) 001001.110 
Number is positive.  
Carry is added 

 
(-A) 101100.100 
+B 001001.101 

(-A)+B 110110.001 
Number is negative. 

 
  (-A) 101100.100 
+(-B) 110110.010 

 100010.110 
  (-A)+(-B) 100010.111 
Number is negative. 
Carry is added 

 
 

 
 

 

Note: Result is also in 1's complement representation (except when overflow occurred). 
 

22..66..  AAddddiittiioonn  uussiinngg  ssiiggnn  mmaaggnniittuuddee  rreepprreesseennttaattiioonn  

In the case of sign magnitude representation addition is a little complicated. The addition 
algorithm contains several steps: 

1. Check signs of both numbers. 
2. If signs are equal (both are positive or negative) add magnitudes and use the sign as sign of the 

result. 
3. If numbers have different signs, convert one (negative) of them to 1's or 2's complement 

representation, add both numbers using hints from sections 2.4 or 2.5 and if result is negative, 
convert it into sing magnitude representation. 

22..77..  OOvveerrffllooww  ddeetteeccttiioonn  

Overflow is the most important problem that can occur during addition.   
Example (2's complement representation): 
Let (A)2=(010011.011)2  
then (-A)2=(101100.101)2  
 

A 010011.011 
+A 010011.011 

A+A 100100.110 

Error: Result is negative! 
 
 

(-A) 101100.101 
+(-A) 101100.101 

(-A)+(-A) 011001.010 

Error: Result is positive! 
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One of the possible solutions of detecting overflow is based on testing the carry onto and from 
sign digit. If both carry signals are the same, the result of addition is correct. Otherwise there was 
overflow error during addition operation (see examples presented above). 
If overflow occurred, the number of integer digits should be increased (if it is possible). 

22..88..  CCoommppaarriissoonn    

If we use binary comparator for numbers in sign magnitude, 1's or 2's complement representation, 
the result isn't correct. It is caused by sign bit, which is equal 1 for negative numbers but in binary 
numbers has the biggest weight. To obtain correct result the negative numbers should be 
complemented (in 1's and 2's complement representation), or both numbers should be tested like 
during addition (in sign magnitude representation). 
Using sign magnitude or 1's complement representation, there is one more problem: there are two 
zeros: positive (e.g. 0000.0000) and negative (1000.0000 for sign magnitude or 1111.1111 for 1's 
complement). For these reasons comparator should use an additional combinational circuit, 
detecting positive and negative zeros and forcing equality one the output.   
 

33..  TTaasskkss  ttoo  bbee  ppeerrffoorrmmeedd  dduurriinngg  llaabboorraattoorryy  

1. Obtain full 1-bit adder using NAND gates. 
2. Obtain full 1-bit subtractor using NAND gates. 
3. Obtain full 1-bit comparator using NAND gates. 
4. Obtain full 5-bit adder using one 4-bit adder and NAND gates for numbers in: 

a) 1’s complement representation 
b) 2’s complement representation 

5. Obtain full 5-bit comparator using one 4-bit comparator and NAND gates for numbers in: 
a) 1’s complement representation (positive and negative zeros are equal) 
b) 2’s complement representation 

44..  IInnssttrruuccttiioonnss  ttoo  ffoollllooww  

1. Solve all tasks before the exercise. 
2. Implement the circuits specified by your supervisor (using given elements). 
3. Present working circuits to your supervisor for acceptance. 
 


