Theory of Logic Circuits								
Academic year	Term	Makrokierunek	Exercise Supervisor	Group	Section			
2018/2019	Thursday		KD	0	1			
	15:15-16:45		ΓΓ	2				

Report from exercise number 9

Exercise performed on: 2019-05-09

Subject of the exercise: Registers

Section consists of:

Kacper Garcon Dawid Najda

Task 1

Design a 3-bit shift register counter with the effect of "circling 0" providing it with synchronous self-correction mechanism.

We created truth table for X (input of 1st flip-flop):

$Q_3 Q_2 Q_1$	X (only allowed states)	X (with self-correction)		
000	-	1		
001	-	1		
010	-	1		
011	1	1		
100	-	1		
101	1	1		
1 1 0	0	0		
1 1 1	-	0		

Later we prepared Karnaugh map for X:

Q ₂ Q ₁ Q ₃	00	0 1	11	10
0	1	1	1	1
1	1	1	0	0

We derived equation and converted it to NAND gate:

$$X = \overline{Q_3} + \overline{Q_2} = \overline{Q_3 \cdot Q_2}$$

And implemented into our device:

Task 2

Design a 3-bit parallel-in serial-out register with loading information in one asynchronous stage, not loosing information at the stage of reading.

We created parallel writing for asynchronous inputs by simply connecting W with X_i (for preset) and $\sim X_i$ (for reset). Then we designed a loop for serial reading of the data, connecting R with previous Q.

